मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Prove that blogba = a - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that `"b"^(log_"b""a"` = a

बेरीज

उत्तर

Let blogba = x

∴ logba = logbx

∴ a = x

∴ blogba = a.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Functions - Exercise 6.1 [पृष्ठ ११९]

APPEARS IN

संबंधित प्रश्‍न

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(c) f3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}

 

 


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(ii) fg


If f(x) = cos [π2]x + cos [−π2x, where [x] denotes the greatest integer less than or equal to x, then write the value of f(π).


Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .

 

Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


Which one of the following is not a function?


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

The domain of definition of the function  \[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\] is

 

Check if the following relation is function:


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


Check if the relation given by the equation represents y as function of x:

x + y2 = 9


Find x, if g(x) = 0 where g(x) = `(18 -2x^2)/7`


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Show that if f : A → B and g : B → C are onto, then g ° f is also onto


Express the following logarithmic equation in exponential form

ln 1 = 0


Find the domain of f(x) = ln (x − 5)


If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


Select the correct answer from given alternatives.

If f : R → R is defined by f(x) = x3 then f–1 (8) is equal to :


Answer the following:

A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 5


Answer the following:

Show that, `log ("a"^2/"bc") + log ("b"^2/"ca") + log ("c"^2/"ab")` = 0


Answer the following:

If `log_2"a"/4 = log_2"b"/6 = log_2"c"/(3"k")` and a3b2c = 1 find the value of k


Answer the following:

Find the range of the following function.

f(x) = `x/(9 + x^2)`


Answer the following:

Find the range of the following function.

f(x) = [x] – x


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find a and b


If f(x) = `1/sqrt(4 - 3x)`, then dom(f) = ______..


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`


Let f(x) = `sqrt(1 + x^2)`, then ______.


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The function f: R `rightarrow` R defined by f(x) = sin x is ______.


Range of the function f(x) = `x/(1 + x^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×