मराठी

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}Determine Which of the Set Are Functions from X to Y.(C) F3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)} - Mathematics

Advertisements
Advertisements

प्रश्न

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(c) f3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}

 

 

उत्तर

(c) Given:
f3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}
f3 is not a function from X to Y because 2 ∈ X has two images, 9 and 11, in Y.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.1 [पृष्ठ ८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.1 | Q 11.3 | पृष्ठ ८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


Let A = {9, 10, 11, 12, 13} and let f: A → N be defined by f(n) = the highest prime factor of n. Find the range of f.


Define a function as a correspondence between two sets.

 

What is the fundamental difference between a relation and a function? Is every relation a function?


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(b) f2 = {(1, 1), (2, 7), (3, 5)}


Write the range of the real function f(x) = |x|.

 

If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]

for all x ∈ R − {0}, then write the expression for f(x).

 
 

If f(x) = cos [π2]x + cos [−π2x, where [x] denotes the greatest integer less than or equal to x, then write the value of f(π).


Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .

 

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

If f(x) = cos (log x), then the value of f(x2f(y2) −

\[\frac{1}{2}\left\{ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right\}\] is
 

If \[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\]  for all non-zero x, then f(x) =


The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

The domain of definition of the function f(x) = log |x| is


Check if the following relation is a function.


If f(m) = m2 − 3m + 1, find `f(1/2)`


Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6


Express the area A of a square as a function of its side s


Express the area A of circle as a function of its circumference C.


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Express the following logarithmic equation in exponential form

log2 64 = 6


Solve for x.

x + log10 (1 + 2x) = x log10 5 + log10 6


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Select the correct answer from given alternative.

The domain and range of f(x) = 2 − |x − 5| is


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - 3) + 1/(log(5 - x))`


Answer the following:

Find the range of the following function.

f(x) = [x] – x


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


A graph representing the function f(x) is given in it is clear that f(9) = 2

For what value of x is f(x) = 1?


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Check if this relation is a function


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


Find the range of the following functions given by `|x - 4|/(x - 4)`


Let f and g be two functions given by f = {(2, 4), (5, 6), (8, – 1), (10, – 3)} g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, – 5)} then. Domain of f + g is ______.


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×