मराठी

If 3 F ( X ) + 5 F ( 1 X ) = 1 X − 3 for All Non-zero X, Then F(X) =(A)1 14 ( 3 X + 5 X − 6 )(B) 1 14 ( − 3 X + 5 X − 6 )(C) 1 14 ( − 3 X + 5 X + 6 )(D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If \[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\]  for all non-zero x, then f(x) =

पर्याय

  • (a)  \[\frac{1}{14}\left( \frac{3}{x} + 5x - 6 \right)\]

  • (b)  \[\frac{1}{14}\left( - \frac{3}{x} + 5x - 6 \right)\]

  • (c) \[\frac{1}{14}\left( - \frac{3}{x} + 5x + 6 \right)\]

  • (d) None of these

     
MCQ

उत्तर

(d) None of these

\[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\]

\[\text{ Multiplying (1) by } 3: \]

\[15 f\left( \frac{1}{x} \right) + 9 f(x) = \frac{3}{x} - 9 . . . . . (2)\]

\[\text{ Replacing x by}  \frac{1}{x}\text{ in } (1): \]

\[3 f\left( \frac{1}{x} \right) + 5 f(x) = x - 3 \]

\[\text{ Multiplying by } 5: \]

\[15 f\left( \frac{1}{x} \right) + 25 f(x) = 5x - 15 . . . . (3)\]

\[\text{ Solving (2) and (3) } : \]

\[ - 16 f(x) = \frac{3}{x} - 5x + 6\]

\[ \Rightarrow f(x) = \frac{1}{16}\left( - \frac{3}{x} + 5x - 6 \right)\]

 

shaalaa.com

Notes

Disclaimer: The question in the book has some error, so, none of the options are matching with the solution. The solution is created according to the question given in the book.

 
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 28 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Define a function as a correspondence between two sets.

 

fgh are three function defined from R to R as follow:

(i) f(x) = x2

Find the range of function.

 

If f(x) = (x − a)2 (x − b)2, find f(a + b).

 

If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


If for non-zero xaf(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


Let f(x) = x2 and g(x) = 2x+ 1 be two real functions. Find (g) (x), (f − g) (x), (fg) (x) and  \[\left( \frac{f}{g} \right) \left( x \right)\] .

 

If f : Q → Q is defined as f(x) = x2, then f−1 (9) is equal to


Let f(x) = |x − 1|. Then,


Let f : R → R be defined by f(x) = 2x + |x|. Then f(2x) + f(−x) − f(x) =


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 


If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


Check if the relation given by the equation represents y as function of x:

x + y2 = 9


An open box is made from a square of cardboard of 30 cms side, by cutting squares of length x centimeters from each corner and folding the sides up. Express the volume of the box as a function of x. Also find its domain


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Express the following exponential equation in logarithmic form

e–x = 6


Find the domain of f(x) = ln (x − 5)


Write the following expression as sum or difference of logarithm

`log ("pq"/"rs")`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


Select the correct answer from given alternatives.

If log10(log10(log10x)) = 0 then x =


Answer the following:

Find whether the following function is one-one

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}


Answer the following:

A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 5


Answer the following:

Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not


Answer the following:

Find the domain of the following function.

f(x) = x!


A graph representing the function f(x) is given in it is clear that f(9) = 2

Find the following values of the function 

(a) f(0)

(b) f(7)

(c) f(2)

(d) f(10)


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


Mapping f: R → R which is defined as f(x) = sin x, x ∈ R will be ______ 


Find the domain of the following function.

f(x) = [x] + x


Find the domain and range of the function f(x) = `1/sqrt(x - 5)`


The domain of f(x) = `sin^-1 [log_2(x/2)]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×