मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Check if the relation given by the equation represents y as function of x: x + y2 = 9 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Check if the relation given by the equation represents y as function of x:

x + y2 = 9

बेरीज

उत्तर

x + y2 = 9

∴ y2 = 9 – x

∴ y = `± sqrt(9 - x)`

∴ for every value of x, there are two values of y.

∴ y is not a function of x.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Functions - Exercise 6.1 [पृष्ठ ११८]

APPEARS IN

संबंधित प्रश्‍न

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

Let A = [pqrs] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?


If for non-zero xaf(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

Check if the following relation is function:


Check if the following relation is function:


Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


Check if the following relation is a function.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 3), (4, 1), (2, 2)}


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 1), (2, 1), (3, 1), (4, 1)}


If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b


Express the area A of a square as a function of its perimeter P


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 


Show that if f : A → B and g : B → C are onto, then g ° f is also onto


Express the following exponential equation in logarithmic form

54° = 1


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following exponential equation in logarithmic form

e–x = 6


Find the domain of f(x) = log10 (x2 − 5x + 6)


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Select the correct answer from given alternatives

If f(x) = 2x2 + bx + c and f(0) = 3 and f(2) = 1, then f(1) is equal to


Answer the following:

A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist


A graph representing the function f(x) is given in it is clear that f(9) = 2

What is the image of 6 under f?


A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`


The domain of the function f(x) = `sqrtx` is ______.


Find the domain of the following function.

f(x) = `x/(x^2 + 3x + 2)`


Find the domain of the function f given by f(x) = `1/sqrt([x]^2 - [x] - 6)`


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


Find the domain of the following function given by:

f(x) = `(3x)/(2x - 8)`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find `(f/g)(x)`


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


The domain and range of the real function f defined by f(x) = `(4 - x)/(x - 4)` is given by ______.


The function f: R `rightarrow` R defined by f(x) = sin x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×