मराठी

If E F ( X ) = 10 + X 10 − X , X ∈ (−10, 10) and F ( X ) = K F ( 200 X 100 + X 2 ) , Then K =(A) 0.5 (B) 0.6 (C) 0.7 (D) 0.8 - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

पर्याय

  • (a) 0.5

  • (b) 0.6

  • (c) 0.7

  • (d) 0.8

MCQ

उत्तर

(a) 0.5

\[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\]

\[\Rightarrow f(x) = \log {}_e \left( \frac{10 + x}{10 - x} \right)\]    ...(1)

\[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\]

\[\Rightarrow \log {}_e \left( \frac{10 + x}{10 - x} \right) = k \log_e \left( \frac{10 + \frac{200x}{100 + x^2}}{10 - \frac{200x}{100 + x^2}} \right) {\text{ from }  (1)}\]

\[ \Rightarrow \log {}_e \left( \frac{10 + x}{10 - x} \right) = \text{ k } l {og}_e \left( \frac{1000 + 10 x^2 + 200x}{1000 + 10 x^2 - 200x} \right)\]

\[ \Rightarrow \log {}_e \left( \frac{10 + x}{10 - x} \right) =\text{  k}  l {og}_e \left( \frac{\left( x + 10 \right)^2}{\left( x - 10 \right)^2} \right)\]

\[ \Rightarrow \log {}_e \left( \frac{10 + x}{10 - x} \right) = 2\text{ k }  l {og}_e \frac{\left( x + 10 \right)}{\left( x - 10 \right)}\]

\[ \Rightarrow 1 = 2k\]

\[ \Rightarrow k = 1/2 = 0 . 5\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 25 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

  1. {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
  2. {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
  3. {(1, 3), (1, 5), (2, 5)}

Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


If for non-zero xaf(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vii) f2 + 7f


Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

Let f : R → R be defined by f(x) = 2x + |x|. Then f(2x) + f(−x) − f(x) =


The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =


Check if the following relation is function:


If f(m) = m2 − 3m + 1, find `f(1/2)`


If ƒ(m) = m2 − 3m + 1, find f(x + 1)


If f(x) = 3x + a and f(1) = 7 find a and f(4).


If f(m) = m2 − 3m + 1, find `f(1/2)`


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


Find the domain and range of the following function.

f(x) = 7x2 + 4x − 1


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Express the following logarithmic equation in exponential form

`log_(1/2) (8)` = – 3


Prove that logbm a = `1/"m" log_"b""a"`


Prove that alogcb = blogca


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


The equation logx2 16 + log2x 64 = 3 has,


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Answer the following:

A function f : R → R defined by f(x) = `(3x)/5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f–1


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

For any base show that log (1 + 2 + 3) = log 1 + log 2 + log 3


Answer the following:

Find value of `(3 + log_10 343)/(2 + 1/2 log_10 (49/4) + 1/2 log_10 (1/25)`


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - 3) + 1/(log(5 - x))`


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find a and b


Find the range of the following functions given by f(x) = 1 + 3 cos2x

(Hint: –1 ≤ cos 2x ≤ 1 ⇒ –3 ≤ 3 cos 2x ≤ 3 ⇒ –2 ≤ 1 + 3cos 2x ≤ 4)


If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`


Let f(x) = `sqrt(1 + x^2)`, then ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


Which of the following functions is NOT one-one?


Let f(θ) = sin θ (sin θ + sin 3θ) then ______.


Range of the function f(x) = `x/(1 + x^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×