मराठी

The Function F : R → R is Defined by F(X) = Cos2 X + Sin4 X. Then, F(R) = (A) [3/4, 1) (B) (3/4, 1] (C) [3/4, 1] (D) (3/4, 1) - Mathematics

Advertisements
Advertisements

प्रश्न

The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =

पर्याय

  • (a) [3/4, 1)

  • (b) (3/4, 1]

  • (c) [3/4, 1]

  • (d) (3/4, 1)

     
MCQ

उत्तर

(c) [3/4, 1] 

Given:
f(x) = cos2x + sin4x

\[\Rightarrow f\left( x \right) = 1 - \sin^2 x + \sin^4 x\]

\[\Rightarrow f\left( x \right) = \left( \sin^2 x - \frac{1}{2} \right)^2 + \frac{3}{4}\] The minimum value of  \[f\left( x \right)\] is \[\frac{3}{4}\]

Also,

\[\sin^2 x \leq 1\]

\[ \Rightarrow \sin^2 x - \frac{1}{2} \leq \frac{1}{2}\]

\[ \Rightarrow \left( \sin^2 x - \frac{1}{2} \right)^2 \leq \frac{1}{4}\]

\[ \Rightarrow \left( \sin^2 x - \frac{1}{2} \right)^2 + \frac{3}{4} \leq \frac{1}{4} + \frac{3}{4}\]

\[ \Rightarrow f\left( x \right) \leq 1\]

The maximum value of

\[f\left( x \right)\]  is 1.

∴ f(R) = (3/4, 1)

 
 
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 21 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let A = {9, 10, 11, 12, 13} and let f: A → N be defined by f(n) = the highest prime factor of n. Find the range of f.


What is the fundamental difference between a relation and a function? Is every relation a function?


Let f : R → R and g : C → C be two functions defined as f(x) = x2 and g(x) = x2. Are they equal functions?


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(c) f3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}

 

 


If  \[f\left( x \right) = \frac{x + 1}{x - 1}\] , show that f[f[(x)]] = x.

 

 


If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(i) f + g

 
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iv) \[\frac{f}{g}\]

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]

 

 


Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

The domain of definition of the function f(x) = log |x| is


The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

If f(x) = 3x + a and f(1) = 7 find a and f(4).


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


Check if the following relation is a function.


Check if the following relation is a function.


If f(m) = m2 − 3m + 1, find f(−3)


If f(m) = m2 − 3m + 1, find f(x + 1)


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


Find x, if g(x) = 0 where g(x) = `(5x - 6)/7`


Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2


Show that if f : A → B and g : B → C are onto, then g ° f is also onto


Express the following logarithmic equation in exponential form

ln e = 1


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(0, 0), (1, 1), (1, –1), (4, 2), (4, –2), (9, 3), (9, –3), (16, 4), (16, –4)}


Answer the following:

Find x, if x = 33log32  


Find the domain of the following function.

f(x) = `sqrtlog(x^2 - 6x + 6)`


A graph representing the function f(x) is given in it is clear that f(9) = 2

 Describe the following Domain


A function f is defined by f(x) = 3 – 2x. Find x such that f(x2) = (f(x))2


A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour


The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.


If f(x) = `1/sqrt(4 - 3x)`, then dom(f) = ______..


Find the domain of the following function.

f(x) = `x/(x^2 + 3x + 2)`


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.


The period of the function

f(x) = `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×