मराठी

Let F and G Be Two Real Functions Defined by F ( X ) = √ X + 1 and G ( X ) = √ 9 − X 2 . Then, Describe Function: (Iv) F G - Mathematics

Advertisements
Advertisements

प्रश्न

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iv) \[\frac{f}{g}\]

 

उत्तर

Given:

\[f\left( x \right) = \sqrt{x + 1}\text{ and } g\left( x \right) = \sqrt{9 - x^2}\]

Clearly,

\[f\left( x \right) = \sqrt{x + 1}\]  is defined for all x ≥ - 1.
Thus, domain (f) = [1, ∞]
Again,
 
\[g\left( x \right) = \sqrt{9 - x^2}\]   is defined for  9 -x2 ≥ 0 ⇒ x2 - 9 ≤ 0
⇒ x2 - 32 ≤ 0
⇒ (x + 3)(x - 3) ≤ 0
\[x \in \left[ - 3, 3 \right]\]
Thus, domain (g) = [ - 3, 3]
Now,
domain ( f ) ∩ domain( g ) = [ -1, ∞] ∩ [- 3, 3]    = [ -1, 3]
(iv) \[\frac{f}{g}: \left[ - 1, 3 \right] \to \text{ R is given by } \left( \frac{f}{g} \right)\left( x \right) = \frac{f\left( x \right)}{g\left( x \right)} = \frac{\sqrt{x + 1}}{\sqrt{9 - x^2}} = \sqrt{\frac{x + 1}{9 - x^2}}\].
 
 


 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.4 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.4 | Q 4.4 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let f : R → R and g : C → C be two functions defined as f(x) = x2 and g(x) = x2. Are they equal functions?


The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]

for all x ∈ R − {0}, then write the expression for f(x).

 
 

If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .

 

If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

A function f is defined as follows: f(x) = 5 − x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


Check if the following relation is a function.


If f(m) = m2 − 3m + 1, find `f(1/2)`


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2


Express the following exponential equation in logarithmic form

25 = 32


Express the following exponential equation in logarithmic form

231 = 23


Express the following exponential equation in logarithmic form

e–x = 6


Express the following logarithmic equation in exponential form

log2 64 = 6


Solve for x.

log2 x + log4 x + log16 x = `21/4`


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


The equation logx2 16 + log2x 64 = 3 has,


Answer the following:

Find x, if x = 33log32  


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.


If the domain of function f(a) = a2 - 4a + 8 is (-∞, ∞), then the range of function is ______


Mapping f: R → R which is defined as f(x) = sin x, x ∈ R will be ______ 


Let f : R → R be defined by 

f(x) = `{(3x;    x > 2),(2x^2;    1 ≤ x ≤ 2), (4x;   x < 1):}`

Then f(-2) + f(1) + f(3) is ______ 


Find the domain of the function f given by f(x) = `1/sqrt([x]^2 - [x] - 6)`


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


The domain of the function f defined by f(x) = `sqrt(4 - x) + 1/sqrt(x^2 - 1)` is equal to ______.


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


The range of the function y = `1/(2 - sin3x)` is ______.


Let f(θ) = sin θ (sin θ + sin 3θ) then ______.


The domain of f(x) = `sin^-1 [log_2(x/2)]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×