मराठी

Let F and G Be Two Real Functions Defined by F ( X ) = √ X + 1 and G ( X ) = √ 9 − X 2 . Then, Describe Function: (V) G F - Mathematics

Advertisements
Advertisements

प्रश्न

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

उत्तर

Given:

\[f\left( x \right) = \sqrt{x + 1}\text{ and } g\left( x \right) = \sqrt{9 - x^2}\]

Clearly,

\[f\left( x \right) = \sqrt{x + 1}\]  is defined for all x ≥ - 1.
Thus, domain (f) = [1, ∞]
Again,
 
\[g\left( x \right) = \sqrt{9 - x^2}\]   is defined for  9 -x2 ≥ 0 ⇒ x2 - 9 ≤ 0
⇒ x2 - 32 ≤ 0
⇒ (x + 3)(x - 3) ≤ 0
\[x \in \left[ - 3, 3 \right]\]
Thus, domain (g) = [ - 3, 3]
Now,
domain ( f ) ∩ domain( g ) = [ -1, ∞] ∩ [- 3, 3]    = [ -1, 3]
(v) \[\frac{g}{f}: \left[ - 1, 3 \right] \to R \text{ is given by}  \left( \frac{g}{f} \right)\left( x \right) = \frac{g\left( x \right)}{f\left( x \right)} = \frac{\sqrt{9 - x^2}}{\sqrt{x + 1}} = \sqrt{\frac{9 - x^2}{x + 1}}\]. 

 
 
 


 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.4 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.4 | Q 4.5 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If  \[f\left( x \right) = x^3 - \frac{1}{x^3}\] , show that

\[f\left( x \right) + f\left( \frac{1}{x} \right) = 0 .\]
 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

If f(x) = cos [π2]x + cos [−π2x, where [x] denotes the greatest integer less than or equal to x, then write the value of f(π).


Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If f : Q → Q is defined as f(x) = x2, then f−1 (9) is equal to


If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

If x ≠ 1 and \[f\left( x \right) = \frac{x + 1}{x - 1}\] is a real function, then f(f(f(2))) is

 

f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,

 
 

The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


Check if the following relation is function:


If f(m) = m2 − 3m + 1, find f(−3)


If f(x) = 3x + a and f(1) = 7 find a and f(4).


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 3), (4, 1), (2, 2)}


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 1), (2, 1), (3, 1), (4, 1)}


Check if the relation given by the equation represents y as function of x:

2x + 3y = 12


Check if the relation given by the equation represents y as function of x:

3x − 6 = 21


If f(m) = m2 − 3m + 1, find f(0)


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


Find the domain and range of the following function.

f(x) = 7x2 + 4x − 1


Find the domain and range of the follwoing function.

h(x) = `sqrt(x + 5)/(5 + x)`


Express the area A of a square as a function of its perimeter P


Show that if f : A → B and g : B → C are one-one, then g ° f is also one-one


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Write the following expression as sum or difference of logarithm

In `(("a"^3 ("a" - 2)^2)/sqrt("b"^2 + 5))`


Write the following expression as a single logarithm.

5 log x + 7 log y − log z


Solve for x.

x + log10 (1 + 2x) = x log10 5 + log10 6


If `log((x + y)/3) = 1/2 log x + 1/2 logy`, show that `x/y + y/x` = 7


Answer the following:

A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist


Answer the following:

If a2 + b2 = 7ab, show that, `log(("a" + "b")/3) = 1/2 log "a" + 1/2 log "b"`


A function f is defined by f(x) = 2x – 3 find x such that f(x) = f(1 – x)


Find the range of the following functions given by `sqrt(16 - x^2)`


Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


If f: R `rightarrow` R be a function defined by f(x) = 4x3 – 7. Then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×