मराठी

Domain of a2-x2 (a>0) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.

पर्याय

  • (– a, a)

  • [– a, a]

  • [0, a]

  • (– a, 0]

MCQ
रिकाम्या जागा भरा

उत्तर

Domain of `sqrt(a^2 - x^2)  (a > 0)` is [– a, a].

Explanation:

Let f(x) = `sqrt(a^2 - x^2)`

f(x) is defined if a2 – x2 ≥ 0

⇒ x2 – a2 ≤ 0

⇒ x2 ≤ a2

⇒ x ≤ ± a

⇒ – a ≤ x ≤ a

∴ Domain of f(x) = [– a, a]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Relations and Functions - Exercise [पृष्ठ ३१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 2 Relations and Functions
Exercise | Q 28 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let A = {9, 10, 11, 12, 13} and let f: A → N be defined by f(n) = the highest prime factor of n. Find the range of f.


If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]

for all x ∈ R − {0}, then write the expression for f(x).

 
 

If x ≠ 1 and \[f\left( x \right) = \frac{x + 1}{x - 1}\] is a real function, then f(f(f(2))) is

 

If f(x) = sin [π2x + sin [−π]2 x, where [x] denotes the greatest integer less than or equal to x, then


The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


Check if the following relation is function:


If ƒ(m) = m2 − 3m + 1, find f(x + 1)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


If f(x) = 3x + a and f(1) = 7 find a and f(4).


Check if the following relation is a function.


If f(m) = m2 − 3m + 1, find f(− x)


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


Show that if f : A → B and g : B → C are onto, then g ° f is also onto


Write the following expression as a single logarithm.

ln (x + 2) + ln (x − 2) − 3 ln (x + 5)


Prove that logbm a = `1/"m" log_"b""a"`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Select the correct answer from given alternatives.

Find x, if 2log2 x = 4


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = `x/(x + 1)`, g(x) = `x/(1 - x)`


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the height of a person whose forehand length is 40 cm


Find the range of the following functions given by `|x - 4|/(x - 4)`


Find the domain and range of the function f(x) = `1/sqrt(x - 5)`


Range of f(x) = `1/(1 - 2 cosx)` is ______.


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


The range of the function y = `1/(2 - sin3x)` is ______.


If f: R `rightarrow` R be a function defined by f(x) = 4x3 – 7. Then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×