मराठी

If F(X) = Sin [π2] X + Sin [−π]2 X, Where [X] Denotes the Greatest Integer Less than Or Equal to X, Then (A) F(π/2) = 1 (B) F(π) = 2 (C) F(π/4) = −1 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = sin [π2x + sin [−π]2 x, where [x] denotes the greatest integer less than or equal to x, then

पर्याय

  • (a) f(π/2) = 1

  • (b) f(π) = 2

  • (c) f(π/4) = −1

  • (d) None of these

     
MCQ

उत्तर

(a) f(π/2) = 1

f(x) = sin [π2x + sin [−π2]x

\[\Rightarrow f(x) = \sin \left[ 9 . 8 \right]x + \sin \left[ - 9 . 8 \right]x\]

\[ \Rightarrow f(x) = \sin 9x - \sin 10x\]

\[f\left( \frac{\pi}{2} \right) = \sin 9 \times \frac{\pi}{2} - \sin 10 \times \frac{\pi}{2}\]

\[ \Rightarrow f\left( \frac{\pi}{2} \right) = 1 - 0 = 1\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 30 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

What is the fundamental difference between a relation and a function? Is every relation a function?


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(c) whether f(xy) = f(x) : f(y) holds

 

Let f : R → R and g : C → C be two functions defined as f(x) = x2 and g(x) = x2. Are they equal functions?


fgh are three function defined from R to R as follow:

(iii) h(x) = x2 + 1

Find the range of function.


Let A = [pqrs] and B = [1, 2, 3]. Which of the following relations from A to B is not a function?


The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .

 

Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


The domain of definition of the function  \[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\] is

 

The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


If ƒ(m) = m2 − 3m + 1, find f(x + 1)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 2), (2, −1), (3, 1), (4, 3)}


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 3), (4, 1), (2, 2)}


Check if the relation given by the equation represents y as function of x:

2x + 3y = 12


Find the domain and range of the following function.

f(x) = `sqrt((x - 3)/(7 - x))`


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Given that log 2 = a and log 3 = b, write `log sqrt(96)` in terms of a and b


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

Find whether the following function is one-one

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}


Answer the following:

Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1 


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

Solve for x, logx (8x – 3) – logx 4 = 2


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


If f(x) = `x^3 - 1/x^3`, then `f(x) + f(1/x)` is equal to ______.


Find the range of the following functions given by f(x) = 1 – |x – 2| 


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f – g)(x)


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (fg)(x)


If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


Which of the following functions is NOT one-one?


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×