Advertisements
Advertisements
प्रश्न
Answer the following:
Find whether the following function is one-one
f : R → R defined by f(x) = x2 + 5
उत्तर
f : R → R defined by f(x) = x2 + 5
∵ f(– x) = f(x) = x2 + 5
∴ f is not one-one (i.e. many-one) function.
APPEARS IN
संबंधित प्रश्न
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(iii) f g
If f(x) = 4x − x2, x ∈ R, then write the value of f(a + 1) −f(a − 1).
Write the domain and range of function f(x) given by
Which of the following are functions?
The range of the function \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\] is
If f(x) = cos (loge x), then \[f\left( \frac{1}{x} \right)f\left( \frac{1}{y} \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\}\] is equal to
If f(x) = sin [π2] x + sin [−π]2 x, where [x] denotes the greatest integer less than or equal to x, then
The domain of definition of the function f(x) = log |x| is
Check if the following relation is function:
If f(m) = m2 − 3m + 1, find f(0)
A function f is defined as follows: f(x) = 5 − x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3
Check if the following relation is a function.
Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.
{(1, 3), (4, 1), (2, 2)}
If f(m) = m2 − 3m + 1, find f(0)
If f(m) = m2 − 3m + 1, find `f(1/2)`
Find the domain and range of the following function.
f(x) = `sqrt(16 - x^2)`
Check the injectivity and surjectivity of the following function.
f : N → N given by f(x) = x3
Express the following exponential equation in logarithmic form
e–x = 6
Express the following logarithmic equation in exponential form
log2 64 = 6
Write the following expression as sum or difference of logarithm
In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`
If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b
If `log((x + y)/3) = 1/2 log x + 1/2 logy`, show that `x/y + y/x` = 7
Answer the following:
A function f : R → R defined by f(x) = `(3x)/5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f–1
A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3
Answer the following:
If a2 + b2 = 7ab, show that, `log(("a" + "b")/3) = 1/2 log "a" + 1/2 log "b"`
Answer the following:
Without using log tables, prove that `2/5 < log_10 3 < 1/2`
Answer the following:
Find the range of the following function.
f(x) = [x] – x
An open box is to be made from a square piece of material, 24 cm on a side, by cutting equal square from the corner and turning up the side as shown. Express the volume V of the box as a function of x
The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`
Write an expression for gf(x) in its simplest form
Find the range of the following functions given by `|x - 4|/(x - 4)`
If f(x) = `x^3 - 1/x^3`, then `f(x) + f(1/x)` is equal to ______.
Find the range of the following functions given by f(x) = `3/(2 - x^2)`
Find the range of the following functions given by f(x) = |x − 3|
The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.
The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.
Which of the following functions is NOT one-one?
The domain of f(x) = `sin^-1 [log_2(x/2)]` is ______.