Advertisements
Advertisements
प्रश्न
Find the range of the following functions given by f(x) = `3/(2 - x^2)`
उत्तर
Let f(x) = y
y = `3/(2 - x^2)`
⇒ 2 – x2
= `3/"y"`
⇒ = `2 - 3/y`
But, we know that, x2 ≥ 0
`2 - 3/y ≥ 0`
⇒ `(2y - 3)/y ≥ 0`
⇒ y > 0 and 2y – 3 ≥ 0
⇒ y > 0 and 2y ≥ 3
⇒ y > 0 and y ≥ `3/2`
Or f(x) > 0 and f(x) ≥ `3/2`
f(x) ∈ `( – oo, 0) ∪ (3/2 , oo)`
⇒ f(x) ∈ `( – oo, 0) ∪ (3/2 , oo)`
Therefore, the range of f = `(-oo, 0) ∪ (3/2 , oo)`.
APPEARS IN
संबंधित प्रश्न
If for non-zero x, af(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(i) f + g
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(iv) \[\frac{f}{g}\]
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(vii) f2 + 7f
Let f and g be two functions given by
f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.
Find the domain of f + g
Let f and g be two real functions given by
f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}
Find the domain of fg.
If A = {1, 2, 3} and B = {x, y}, then the number of functions that can be defined from A into B is
If f(x) = sin [π2] x + sin [−π]2 x, where [x] denotes the greatest integer less than or equal to x, then
Check if the following relation is function:
If f(x) = `{(x^2 + 3"," x ≤ 2),(5x + 7"," x > 2):},` then find f(0)
If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b
Find the domain and range of the following function.
f(x) = 7x2 + 4x − 1
Show that if f : A → B and g : B → C are onto, then g ° f is also onto
Express the following logarithmic equation in exponential form
`log_(1/2) (8)` = – 3
Prove that alogcb = blogca
If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain
Select the correct answer from given alternatives.
Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.
Answer the following:
Find whether the following function is one-one
f : R → R defined by f(x) = x2 + 5
Answer the following:
Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0
Answer the following:
Show that `7log (15/16) + 6log(8/3) + 5log (2/5) + log(32/25)` = log 3
Answer the following:
Find the domain of the following function.
f(x) = `(x^2 + 4x + 4)/(x^2 + x - 6)`
The domain of the function f(x) = `sqrtx` is ______.
If a function f(x) is given as f(x) = x2 – 6x + 4 for all x ∈ R, then f(–3) = ______.
Let A and B be any two sets such that n(B) = p, n(A) = q then the total number of functions f : A → B is equal to ______.
Let f and g be two functions given by f = {(2, 4), (5, 6), (8, – 1), (10, – 3)} g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, – 5)} then. Domain of f + g is ______.
Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`
If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.
The domain and range of the real function f defined by f(x) = `(4 - x)/(x - 4)` is given by ______.
The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.