Advertisements
Advertisements
प्रश्न
If for non-zero x, af(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).
उत्तर
Given :
\[af\left( x \right) + bf\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] ...(i)
On adding equations (i) and (ii), we get:
\[af\left( x \right) + bf\left( x \right) + bf\left( \frac{1}{x} \right) + af\left( \frac{1}{x} \right) = \frac{1}{x} - 5 + x - 5\]
\[\Rightarrow \left( a + b \right)f\left( x \right) + \left( a + b \right)f\left( \frac{1}{x} \right) = \frac{1}{x} + x - 10\]
\[\Rightarrow f\left( x \right) + f\left( \frac{1}{x} \right) = \frac{1}{\left( a + b \right)}\left[ \frac{1}{x} + x - 10 \right]\] ...(iii)
On subtracting (ii) from (i), we get:
\[af\left( x \right) - bf\left( x \right) + bf\left( \frac{1}{x} \right) - af\left( \frac{1}{x} \right) = \frac{1}{x} - 5 - x + 5\]
\[\Rightarrow \left( a - b \right)f\left( x \right) - f\left( \frac{1}{x} \right)\left( a - b \right) = \frac{1}{x} - x\]
\[\Rightarrow f\left( x \right) - f\left( \frac{1}{x} \right) = \frac{1}{\left( a - b \right)}\left[ \frac{1}{x} - x \right]\] ...(iv)
On adding equations (iii) and (iv), we get:
\[2f\left( x \right) = \frac{1}{a + b}\left[ \frac{1}{x} + x - 10 \right] + \frac{1}{a - b}\left[ \frac{1}{x} - x \right]\]
\[\Rightarrow 2f\left( x \right) = \frac{\left( a - b \right)\left[ \frac{1}{x} + x - 10 \right] + \left( a + b \right)\left[ \frac{1}{x} - x \right]}{\left( a + b \right)\left( a - b \right)}\]
\[\Rightarrow 2f\left( x \right) = \frac{\frac{a}{x} + ax - 10a - \frac{b}{x} - bx + 10b + \frac{a}{x} - ax + \frac{b}{x} - bx}{a^2 - b^2}\]
\[\Rightarrow 2f\left( x \right) = \frac{\frac{2a}{x} - 10a + 10b - 2bx}{a^2 - b^2}\]
\[\Rightarrow f\left( x \right) = \frac{1}{a^2 - b^2} \times \frac{1}{2}\left[ \frac{2a}{x} - 10a + 10b - 2bx \right]\]
\[= \frac{1}{a^2 - b^2}\left[ \frac{a}{x} - 5a + 5b - bx \right]\]
Therefore ,
\[f\left( x \right) = \frac{1}{a^2 - b^2}\left[ \frac{a}{x} - bx - 5a + 5b \right]\]
\[= \frac{1}{a^2 - b^2}\left[ \frac{a}{x} - bx \right] - \frac{5\left( a - b \right)}{a^2 - b^2}\]
\[= \frac{1}{a^2 - b^2}\left[ \frac{a}{x} - bx \right] - \frac{5\left( a - b \right)}{\left( a - b \right)\left( a + b \right)}\]
\[= \frac{1}{a^2 - b^2}\left[ \frac{a}{x} - bx \right] - \frac{5}{\left( a + b \right)}\]
Hence,
\[f\left( x \right) = \frac{1}{a^2 - b^2}\left[ \frac{a}{x} - bx \right] - \frac{5}{\left( a + b \right)}\]
APPEARS IN
संबंधित प्रश्न
If f(x) = x2, find `(f(1.1) - f(1))/((1.1 - 1))`
Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.
If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(i) f + g
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(vi) \[2f - \sqrt{5} g\]
Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is
If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\] x ∈ R, then
The domain of the function
The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is
Check if the following relation is function:
If f(x) = `{(x^2 + 3"," x ≤ 2),(5x + 7"," x > 2):},` then find f(3)
Which of the following relations are functions? If it is a function determine its domain and range:
{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
Which of the following relations are functions? If it is a function determine its domain and range:
{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}
If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.
Find the domain and range of the following function.
f(x) = `root(3)(x + 1)`
Find the domain and range of the following function.
f(x) = `sqrt(16 - x^2)`
Express the area A of a square as a function of its side s
Express the area A of circle as a function of its diameter d
Express the following exponential equation in logarithmic form
54° = 1
Express the following exponential equation in logarithmic form
`"e"^(1/2)` = 1.6487
Express the following logarithmic equation in exponential form
log10 (0.001) = −3
Express the following logarithmic equation in exponential form
`log_(1/2) (8)` = – 3
Find the domain of f(x) = ln (x − 5)
Write the following expression as sum or difference of logarithm
`log (sqrt(x) root(3)(y))`
Prove that `"b"^(log_"b""a"` = a
Solve for x.
x + log10 (1 + 2x) = x log10 5 + log10 6
Answer the following:
If f(x) = 3x4 – 5x2 + 7 find f(x – 1)
Answer the following:
Show that, `log ("a"^2/"bc") + log ("b"^2/"ca") + log ("c"^2/"ab")` = 0
Answer the following:
If `log"a"/(x + y - 2z) = log"b"/(y + z - 2x) = log"c"/(z + x - 2y)`, show that abc = 1
Answer the following:
Find (f ° g) (x) and (g ° f) (x)
f(x) = `x/(x + 1)`, g(x) = `x/(1 - x)`
Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)
A graph representing the function f(x) is given in it is clear that f(9) = 2
For what value of x is f(x) = 1?
The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.
Length ‘x’ of forehand (in cm) |
Height 'y' (in inches) |
35 | 56 |
45 | 65 |
50 | 69.5 |
55 | 74 |
Find the length of forehand of a person if the height is 53.3 inches
The domain of the function f(x) = `sqrtx` is ______.
The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.
Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`
Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`
Find the range of the following functions given by f(x) = 1 + 3 cos2x
(Hint: –1 ≤ cos 2x ≤ 1 ⇒ –3 ≤ 3 cos 2x ≤ 3 ⇒ –2 ≤ 1 + 3cos 2x ≤ 4)
If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)