मराठी

P the Range of the Function F ( X ) = X + 2 | X + 2 | ,X ≠ −2 is (A) {−1, 1} (B) {−1, 0, 1} (C) {1} (D) (0, ∞) - Mathematics

Advertisements
Advertisements

प्रश्न

The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

पर्याय

  • (a) {−1, 1}

  • (b) {−1, 0, 1}

  • (c) {1}

  • (d) (0, ∞)

     
MCQ

उत्तर

(a) {−1, 1}

\[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\]  , x ≠ −2
\[\text{ Let } y = \frac{x + 2}{\left| x + 2 \right|}\]
\[\text{ For }  \left| x + 2 \right| > 0, \]
\[\text{ or } x > - 2 , \]
\[y = \frac{x + 2}{x + 2} = 1\]
\[\text{ For }  \left| x + 2 \right| < 0, \]
\[\text{ or }  x < - 2, \]
\[y = \frac{x + 2}{- (x + 2)} = - 1\]
\[\text{ Thus } , y = { - 1, 1}\]
\[\text{ or range }  f(x) = { - 1, 1} .\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 41 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(i) f + g

 
 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(ii) fg


Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


Check if the following relation is function:


If f(m) = m2 − 3m + 1, find f(0)


If f(m) = m2 − 3m + 1, find f(−3)


Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


Check if the following relation is a function.


Check if the relation given by the equation represents y as function of x:

2x + 3y = 12


Check if the relation given by the equation represents y as function of x:

3x − 6 = 21


If f(m) = m2 − 3m + 1, find f(− x)


Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


Find the domain and range of the following function.

f(x) = `root(3)(x + 1)`


Express the area A of circle as a function of its circumference C.


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x3


Express the following logarithmic equation in exponential form

ln 1 = 0


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

Find value of `(3 + log_10 343)/(2 + 1/2 log_10 (49/4) + 1/2 log_10 (1/25)`


Given the function f: x → x2 – 5x + 6, evaluate f(– 1)


A graph representing the function f(x) is given in it is clear that f(9) = 2

Find the following values of the function 

(a) f(0)

(b) f(7)

(c) f(2)

(d) f(10)


A graph representing the function f(x) is given in it is clear that f(9) = 2

What is the image of 6 under f?


The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.


Find the range of the following functions given by `sqrt(16 - x^2)`


Find the range of the following functions given by f(x) = |x − 3|


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


The domain of the function f defined by f(x) = `sqrt(4 - x) + 1/sqrt(x^2 - 1)` is equal to ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


Which of the following functions is NOT one-one?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×