मराठी

Let a and B Be Two Sets Such that N(A) = P and N(B) = Q, Write the Number of Functions from a to B. - Mathematics

Advertisements
Advertisements

प्रश्न

Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.

उत्तर

It is given that A and B are two sets such that n(A) = p and n(B) = q.

Now, any element of set A, say ai (1 ≤ i ≤ p), is related with an element of set B in q ways. Similarly, other elements of set A are related with an element of set B in q ways.

Thus, every element of set A is related with every element of set B in ways.

∴ Total number of functions from A to B = q × × q × ... × q (p times) = qp

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.5 | Q 15 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

What is the fundamental difference between a relation and a function? Is every relation a function?


Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(b) {x : f(x) = −2}


fgh are three function defined from R to R as follow:

(iii) h(x) = x2 + 1

Find the range of function.


et A = (12, 13, 14, 15, 16, 17) and f : A → Z be a function given by
f(x) = highest prime factor of x.
Find range of f.


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(ii) fg


If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

If fgh are real functions given by f(x) = x2g(x) = tan x and h(x) = loge x, then write the value of (hogof)\[\left( \sqrt{\frac{\pi}{4}} \right)\] .

 


Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .

 

Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


The range of the function f(x) = |x − 1| is


Check if the following relation is function:


If f(m) = m2 − 3m + 1, find f(−3)


Which of the following relations are functions? If it is a function determine its domain and range:

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


Express the area A of circle as a function of its radius r


Express the following exponential equation in logarithmic form

231 = 23


Express the following logarithmic equation in exponential form

log2 64 = 6


Express the following logarithmic equation in exponential form

`log_(1/2) (8)` = – 3


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy


Given the function f: x → x2 – 5x + 6, evaluate f(2)


A graph representing the function f(x) is given in it is clear that f(9) = 2

 Describe the following Domain


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


Find the domain of the following functions given by f(x) = x|x|


The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.


The expression \[\begin{array}{cc}\log_p\log_p\sqrt[p]{\sqrt[p]{\sqrt[p]{\text{...........}\sqrt[p]{p}}}}\\
\phantom{...........}\ce{\underset{n radical signs}{\underline{\uparrow\phantom{........}\uparrow}}}
\end{array}\]where p ≥ 2, p ∈ N; ∈ N when simplified is ______.


The function f: R `rightarrow` R defined by f(x) = sin x is ______.


The range of the function f(x) = x2 + 2x+ 2 is ______.


Let f be a function with domain [–3, 5] and let g(x) = | 3x + 4 |. Then, the domain of (fog) (x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×