मराठी

The Domain of the Function F ( X ) = √ ( X + 1 ) ( X − 3 ) X − 2 is (A) [−1, 2) ∪ [3, ∞) (B) (−1, 2) ∪ [3, ∞) (C) [−1, 2] ∪ [3, ∞) (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

पर्याय

  • (a) [−1, 2) ∪ [3, ∞)

  • (b) (−1, 2) ∪ [3, ∞)

  • (c) [−1, 2] ∪ [3, ∞)

  • (d) None of these

     
MCQ

उत्तर

(a) [−1, 2) ∪ [3, ∞) 

\[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\]
\[\text{ For f(x) to be defined, }  \]
\[(x - 2) \neq 0\]
\[ \Rightarrow x \neq 2 . . . (1)\]
\[\text{ Also, } \]
\[\frac{(x + 1)(x - 3)}{(x - 2)} \geq 0\]
\[ \Rightarrow \frac{(x + 1)(x - 3)(x - 2)}{(x - 2 )^2} \geq 0\]
\[ \Rightarrow (x + 1)(x - 3)(x - 2) \geq 0\]
\[ \Rightarrow x \in [ - 1, 2) \cup [3, \infty ) . . . . . (2)\]
\[\text{ From (1) and (2),} \]
\[x \in [ - 1, 2) \cup [3, \infty ) \]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 33 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(c) whether f(xy) = f(x) : f(y) holds

 

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(b) f2 = {(1, 1), (2, 7), (3, 5)}


If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(i) f + g

 
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

Write the range of the function f(x) = sin [x], where \[\frac{- \pi}{4} \leq x \leq \frac{\pi}{4}\] . 


Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


Let f : R → R be defined by f(x) = 2x + |x|. Then f(2x) + f(−x) − f(x) =


If x ≠ 1 and \[f\left( x \right) = \frac{x + 1}{x - 1}\] is a real function, then f(f(f(2))) is

 

Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

If f(x) = 3x + a and f(1) = 7 find a and f(4).


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(0)


Check if the relation given by the equation represents y as function of x:

2y + 10 = 0


If f(m) = m2 − 3m + 1, find `f(1/2)`


Find x, if g(x) = 0 where g(x) = `(5x - 6)/7`


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Show that if f : A → B and g : B → C are one-one, then g ° f is also one-one


lf f(x) = 3(4x+1), find f(– 3)


Express the following exponential equation in logarithmic form

231 = 23


Express the following exponential equation in logarithmic form

e2 = 7.3890


Solve for x.

2 log10 x = `1 + log_10 (x + 11/10)`


The equation logx2 16 + log2x 64 = 3 has,


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(0, 0), (1, 1), (1, –1), (4, 2), (4, –2), (9, 3), (9, –3), (16, 4), (16, –4)}


Answer the following:

Find x, if x = 33log32  


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If f(g(x)) = 8x2 – 2x, and g(f(x)) = 4x2 + 6x + 1, then the value of f(2) + g(2) is ______.


The period of the function

f(x) = `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` is ______.


Range of the function f(x) = `x/(1 + x^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×