मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Lf f(x) = 3(4x+1), find f(– 3) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

lf f(x) = 3(4x+1), find f(– 3)

बेरीज

उत्तर

f(x) = 3(4x+1

∴ f(– 3) = 3(4–3+1)

= `3/(4^(-2))`

= `3/16`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Functions - Exercise 6.1 [पृष्ठ ११९]

संबंधित प्रश्‍न

fgh are three function defined from R to R as follow:

(ii) g(x) = sin x

Find the range of function.


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(b) f2 = {(1, 1), (2, 7), (3, 5)}


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]

 

 


The range of f(x) = cos [x], for π/2 < x < π/2 is


If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


If  \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) = 


If  \[f\left( x \right) = 64 x^3 + \frac{1}{x^3}\] and α, β are the roots of \[4x + \frac{1}{x} = 3\] . Then,

 

If \[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\]  for all non-zero x, then f(x) =


The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


If f(m) = m2 − 3m + 1, find f(−3)


Find x, if g(x) = 0 where g(x) = `(5x - 6)/7`


Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Show that if f : A → B and g : B → C are one-one, then g ° f is also one-one


Express the following exponential equation in logarithmic form

54° = 1


Express the following exponential equation in logarithmic form

`"e"^(1/2)` = 1.6487


Prove that logbm a = `1/"m" log_"b""a"`


Solve for x.

x + log10 (1 + 2x) = x log10 5 + log10 6


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


Answer the following:

A function f : R → R defined by f(x) = `(3x)/5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f–1


Answer the following:

Let f : R → R be given by f(x) = x + 5 for all x ∈ R. Draw its graph


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

Find x, if x = 33log32  


Find the domain of the following function.

f(x) = `sqrtlog(x^2 - 6x + 6)`


A function f is defined by f(x) = 2x – 3 find x such that f(x) = 0


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


Find the domain of the following function.

f(x) = `x/(x^2 + 3x + 2)`


Find the range of the following functions given by `|x - 4|/(x - 4)`


Find the range of the following functions given by `sqrt(16 - x^2)`


The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


Let f(x) = `sqrt(1 + x^2)`, then ______.


If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to ______.


The domain of f(x) = `sin^-1 [log_2(x/2)]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×