मराठी

If F ( X ) = 2 X + 2 − X 2 , Then F(X + Y) F(X − Y) is Equal to (A) 1 2 [ F ( 2 X ) + F ( 2 Y ) ](B) 1 2 [ F ( 2 X ) − F ( 2 Y ) ](C) 1 4 [ F ( 2 X ) + F ( 2 Y ) ] - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 

पर्याय

  • (a) \[\frac{1}{2}\left[ f\left( 2x \right) + f\left( 2y \right) \right]\]

     

  • (b)  \[\frac{1}{2}\left[ f\left( 2x \right) - f\left( 2y \right) \right]\]

     

  • (c)  \[\frac{1}{4}\left[ f\left( 2x \right) + f\left( 2y \right) \right]\]

     

  • (d) \[\frac{1}{4}\left[ f\left( 2x \right) - f\left( 2y \right) \right]\]

     

MCQ

उत्तर

(a) \[\frac{1}{2}\left[ f\left( 2x \right) + f\left( 2y \right) \right]\]

Given: \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] Now,
f(x + yf(x − y) = \[\left( \frac{2^{x + y} + 2^{- x - y}}{2} \right)\left( \frac{2^{x - y} + 2^{- x + y}}{2} \right)\]

⇒ f(x + yf(x − y) = \[\frac{1}{4}\left( 2^{2x} + 2^{- 2y} + 2^{2y} + 2^{- 2x} \right)\] ⇒ f(x + yf(x − y) = \[\frac{1}{2}\left( \frac{2^{2x} + 2^{- 2x}}{2} + \frac{2^{2y} + 2^{- 2y}}{2} \right)\]

⇒ f(x + yf(x − y) = \[\frac{1}{2}\left[ f\left( 2x \right) + f\left( 2y \right) \right]\]
 
 
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 13 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f(x) = x2, find `(f(1.1) - f(1))/((1.1 - 1))`


Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(c) f3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}

 

 


If for non-zero xaf(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).

 

Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


Let f(x) = x, \[g\left( x \right) = \frac{1}{x}\]  and h(x) = f(xg(x). Then, h(x) = 1


If \[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\]  for all non-zero x, then f(x) =


The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

If f(m) = m2 − 3m + 1, find f(0)


Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`


Express the area A of circle as a function of its radius r


An open box is made from a square of cardboard of 30 cms side, by cutting squares of length x centimeters from each corner and folding the sides up. Express the volume of the box as a function of x. Also find its domain


Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Select the correct answer from given alternatives

The domain of `1/([x] - x)` where [x] is greatest integer function is


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


Answer the following:

A function f : R → R defined by f(x) = `(3x)/5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f–1


Answer the following:

If f(x) = 3x4 – 5x2 + 7 find f(x – 1)


Answer the following:

Find the domain of the following function.

f(x) = `(x^2 + 4x + 4)/(x^2 + x - 6)`


Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?


Given the function f: x → x2 – 5x + 6, evaluate f(2)


A graph representing the function f(x) is given in it is clear that f(9) = 2

For what value of x is f(x) = 1?


A graph representing the function f(x) is given in it is clear that f(9) = 2

 Describe the following Domain


A graph representing the function f(x) is given in it is clear that f(9) = 2

Describe the following Range


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

Write an expression for gf(x) in its simplest form


Let A = {1, 2, 3, 4} and B = N. Let f : A → B be defined by f(x) = x3 then, find the range of f


The domain of the function f(x) = log3+x (x2 - 1) is ______.


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


Find the range of the following functions given by f(x) = 1 + 3 cos2x

(Hint: –1 ≤ cos 2x ≤ 1 ⇒ –3 ≤ 3 cos 2x ≤ 3 ⇒ –2 ≤ 1 + 3cos 2x ≤ 4)


Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If f(g(x)) = 8x2 – 2x, and g(f(x)) = 4x2 + 6x + 1, then the value of f(2) + g(2) is ______.


The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


Range of the function f(x) = `x/(1 + x^2)` is ______.


The domain of f(x) = `sin^-1 [log_2(x/2)]` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×