हिंदी

If F ( X ) = 2 X + 2 − X 2 , Then F(X + Y) F(X − Y) is Equal to (A) 1 2 [ F ( 2 X ) + F ( 2 Y ) ](B) 1 2 [ F ( 2 X ) − F ( 2 Y ) ](C) 1 4 [ F ( 2 X ) + F ( 2 Y ) ] - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 

विकल्प

  • (a) \[\frac{1}{2}\left[ f\left( 2x \right) + f\left( 2y \right) \right]\]

     

  • (b)  \[\frac{1}{2}\left[ f\left( 2x \right) - f\left( 2y \right) \right]\]

     

  • (c)  \[\frac{1}{4}\left[ f\left( 2x \right) + f\left( 2y \right) \right]\]

     

  • (d) \[\frac{1}{4}\left[ f\left( 2x \right) - f\left( 2y \right) \right]\]

     

MCQ

उत्तर

(a) \[\frac{1}{2}\left[ f\left( 2x \right) + f\left( 2y \right) \right]\]

Given: \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] Now,
f(x + yf(x − y) = \[\left( \frac{2^{x + y} + 2^{- x - y}}{2} \right)\left( \frac{2^{x - y} + 2^{- x + y}}{2} \right)\]

⇒ f(x + yf(x − y) = \[\frac{1}{4}\left( 2^{2x} + 2^{- 2y} + 2^{2y} + 2^{- 2x} \right)\] ⇒ f(x + yf(x − y) = \[\frac{1}{2}\left( \frac{2^{2x} + 2^{- 2x}}{2} + \frac{2^{2y} + 2^{- 2y}}{2} \right)\]

⇒ f(x + yf(x − y) = \[\frac{1}{2}\left[ f\left( 2x \right) + f\left( 2y \right) \right]\]
 
 
 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 13 | पृष्ठ ४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Define a function as a correspondence between two sets.

 

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(c) whether f(xy) = f(x) : f(y) holds

 

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(c) f3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


Write the range of the real function f(x) = |x|.

 

If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

If A = {1, 2, 3} and B = {xy}, then the number of functions that can be defined from A into B is


The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


If f(m) = m2 − 3m + 1, find `f(1/2)`


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 3), (4, 1), (2, 2)}


Express the following exponential equation in logarithmic form

25 = 32


Express the following exponential equation in logarithmic form

54° = 1


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following logarithmic equation in exponential form

In `1/2` = – 0.693


Find the domain of f(x) = ln (x − 5)


Given that log 2 = a and log 3 = b, write `log sqrt(96)` in terms of a and b


Answer the following:

If f(x) = log(1 – x), 0 ≤ x < 1 show that `"f"(1/(1 + x))` = f(1 – x) – f(– x)


Answer the following:

Find value of `(3 + log_10 343)/(2 + 1/2 log_10 (49/4) + 1/2 log_10 (1/25)`


Answer the following:

Find the domain of the following function.

f(x) = `(x^2 + 4x + 4)/(x^2 + x - 6)`


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?


Given the function f: x → x2 – 5x + 6, evaluate f(2)


A graph representing the function f(x) is given in it is clear that f(9) = 2

For what value of x is f(x) = 1?


Let A = {1, 2, 3, 4} and B = N. Let f : A → B be defined by f(x) = x3 then, find the range of f


The range of 7, 11, 16, 27, 31, 33, 42, 49 is ______.


Mapping f: R → R which is defined as f(x) = sin x, x ∈ R will be ______ 


Find the domain of the following function given by:

f(x) = `(3x)/(2x - 8)`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find `(f/g)(x)`


The domain of the function f given by f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` is ______.


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The period of the function

f(x) = `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` is ______.


The range of the function f(x) = `""^(7 - x)P_(x - 3)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×