हिंदी

Answer the following: Find the range of the following function. f(x) = 1 + 2x – 4x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 

योग

उत्तर

f(x) = 1 + 2x + 4x 

Since, 2x > 0, 4x > 0

∴ f(x) > 1

∴ The range of function f = `(1, ∞)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Functions - Miscellaneous Exercise 6.2 [पृष्ठ १३२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Functions
Miscellaneous Exercise 6.2 | Q II. (41) (e) | पृष्ठ १३२

संबंधित प्रश्न

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

  1. {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}
  2. {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}
  3. {(1, 3), (1, 5), (2, 5)}

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(c) whether f(xy) = f(x) : f(y) holds

 

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(c) f3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}

 

 


The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

If A = {1, 2, 3} and B = {xy}, then the number of functions that can be defined from A into B is


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


If x ≠ 1 and \[f\left( x \right) = \frac{x + 1}{x - 1}\] is a real function, then f(f(f(2))) is

 

If f(x) = cos (loge x), then \[f\left( \frac{1}{x} \right)f\left( \frac{1}{y} \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\}\] is equal to

 

If  \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) = 


The domain of definition of the function  \[f\left( x \right) = \sqrt{x - 1} + \sqrt{3 - x}\] is

 

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 


Check if the following relation is function:


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 2), (2, −1), (3, 1), (4, 3)}


If f(m) = m2 − 3m + 1, find f(0)


Find the domain and range of the following function.

f(x) = 7x2 + 4x − 1


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Write the following expression as sum or difference of logarithm

`log (sqrt(x) root(3)(y))`


Select the correct answer from given alternative.

The domain and range of f(x) = 2 − |x − 5| is


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range

{(12, 1), (3, 1), (5, 2)}


Answer the following:

For any base show that log (1 + 2 + 3) = log 1 + log 2 + log 3


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy


Answer the following:

Find the range of the following function.

f(x) = [x] – x


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the length of forehand of a person if the height is 53.3 inches


Mapping f: R → R which is defined as f(x) = sin x, x ∈ R will be ______ 


Find the domain of the following function.

f(x) = `x/(x^2 + 3x + 2)`


Find the range of the following functions given by `|x - 4|/(x - 4)`


Let f and g be two functions given by f = {(2, 4), (5, 6), (8, – 1), (10, – 3)} g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, – 5)} then. Domain of f + g is ______.


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.


The domain and range of the real function f defined by f(x) = `(4 - x)/(x - 4)` is given by ______.


Range of the function f(x) = `x/(1 + x^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×