हिंदी

Select the correct answer from given alternative. The domain and range of f(x) = 2 − |x − 5| is - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Select the correct answer from given alternative.

The domain and range of f(x) = 2 − |x − 5| is

विकल्प

  • R+, `(- ∞, 1]`

  • R, `(- ∞, 2]`

  • R, `(- ∞, 2)`

  • R+, `(- ∞, 2]`

MCQ
आलेख

उत्तर

R, `(- ∞, 2]`

Explanation;


f(x) = 2 − |x − 5|

= 2 – (5 – x), x < 5

= 2 – (x – 5), x ≥ 5

∴ f(x) = `{(x - 3","  x < 5),(7 - x","  x ≥ 5):}`

 Domain = R,

Range (from graph) = `(- ∞, 2]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Functions - Miscellaneous Exercise 6.1 [पृष्ठ १३०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Functions
Miscellaneous Exercise 6.1 | Q I. (10) | पृष्ठ १३०

संबंधित प्रश्न

Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


Define a function as a correspondence between two sets.

 

Let f : R → R and g : C → C be two functions defined as f(x) = x2 and g(x) = x2. Are they equal functions?


If  \[f\left( x \right) = x^3 - \frac{1}{x^3}\] , show that

\[f\left( x \right) + f\left( \frac{1}{x} \right) = 0 .\]
 

 


If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iv) \[\frac{f}{g}\]

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vii) f2 + 7f


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =


Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


Check if the following relation is function:


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b


Express the area A of a square as a function of its perimeter P


Express the area A of circle as a function of its radius r


Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 


Express the following exponential equation in logarithmic form

`"e"^(1/2)` = 1.6487


Express the following logarithmic equation in exponential form

`log_5  1/25` = – 2


Prove that alogcb = blogca


Solve for x.

log2 x + log4 x + log16 x = `21/4`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


Answer the following:

Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1 


Answer the following:

Find x, if x = 33log32  


Answer the following:

If `log (("a" + "b")/2) = 1/2(log"a" + log"b")`, then show that a = b


Answer the following:

If a2 = b3 = c4 = d5, show that loga bcd = `47/30`


A graph representing the function f(x) is given in it is clear that f(9) = 2

Find the following values of the function 

(a) f(0)

(b) f(7)

(c) f(2)

(d) f(10)


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

Write an expression for gf(x) in its simplest form


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f + g)(x)


The domain of the function f given by f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` is ______.


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×