हिंदी

Let a = {X ∈ R : X ≠ 0, −4 ≤ X ≤ 4} and F : a ∈ R Be Defined by F ( X ) = | X | X for X ∈ A. Then Th (Is(A) [1, −1] (B) [X : 0 ≤ X ≤ 4] (C) {1} (D) {X : −4 ≤ X ≤ 0} - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is

विकल्प

  • (a) [1, −1]

  • (b) [x : 0 ≤ x ≤ 4]

  • (c) {1}

  • (d) {x : −4 ≤ x ≤ 0}

     
  • (e) 

    {-1,1} 

MCQ

उत्तर

\[As, \left| x \right| = \binom{x, x \geq 0}{ - x < 0}\]

\[So, f(x) = \frac{x}{\left| x \right|}\]

\[\text{ When x < 0 i . e . x } \in [ - 4, 0)\]

\[f(x) = \frac{x}{- x} = - 1\]

\[\text{ and when }  x > 0 i . e . x \in (0, 4]\]

\[f(x) = \frac{x}{x} = 1\]

\[\text{  So, range } (f) = \left\{ - 1, 1 \right\}\]

shaalaa.com

Notes

Disclaimer: The question in the book has some error. The solution is created according to the question given in the book.

 
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 22 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [yf(y) = −1].


If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

If f(x) = cos (loge x), then \[f\left( \frac{1}{x} \right)f\left( \frac{1}{y} \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\}\] is equal to

 

The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =


If  \[f\left( x \right) = 64 x^3 + \frac{1}{x^3}\] and α, β are the roots of \[4x + \frac{1}{x} = 3\] . Then,

 

The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

The range of the function f(x) = |x − 1| is


The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b


An open box is made from a square of cardboard of 30 cms side, by cutting squares of length x centimeters from each corner and folding the sides up. Express the volume of the box as a function of x. Also find its domain


Express the following exponential equation in logarithmic form

54° = 1


Write the following expression as a single logarithm.

`1/3 log (x - 1) + 1/2 log (x)`


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

If f(x) = 3x + a and f(1) = 7 find a and f(4)


Answer the following:

Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not


Answer the following:

Let f : R → R be given by f(x) = x + 5 for all x ∈ R. Draw its graph


Answer the following:

Find x, if x = 33log32  


Answer the following:

If `log"a"/(x + y - 2z) = log"b"/(y + z - 2x) = log"c"/(z + x - 2y)`, show that abc = 1


Answer the following:

Find the range of the following function.

f(x) = |x – 5|


Answer the following:

Find the range of the following function.

f(x) = [x] – x


A graph representing the function f(x) is given in it is clear that f(9) = 2

For what value of x is f(x) = 1?


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


If f(x) = `1/sqrt(4 - 3x)`, then dom(f) = ______..


Find the range of the following functions given by `sqrt(16 - x^2)`


The domain and range of the real function f defined by f(x) = `(4 - x)/(x - 4)` is given by ______.


The function f: R `rightarrow` R defined by f(x) = sin x is ______.


Which of the following functions is NOT one-one?


Let f(θ) = sin θ (sin θ + sin 3θ) then ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


The range of the function f(x) = `""^(7 - x)P_(x - 3)` is ______.


Range of the function f(x) = `x/(1 + x^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×