हिंदी

Answer the following: If f(x) = 3x + a and f(1) = 7 find a and f(4) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

If f(x) = 3x + a and f(1) = 7 find a and f(4)

योग

उत्तर

f(x) = 3x + a 

∴ f(1) = 3(1) + a = 3 + a

∴ f(1) = 7 gives

3 + a = 7

∴ a = 4

∴ f(x) = 3x + 4

∴ f(4) = 3(4) + 4 = 16.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Functions - Miscellaneous Exercise 6.2 [पृष्ठ १३०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Functions
Miscellaneous Exercise 6.2 | Q II. (9) | पृष्ठ १३०

संबंधित प्रश्न

If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

If for non-zero xaf(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).

 

If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,

 
 

If  \[f\left( x \right) = 64 x^3 + \frac{1}{x^3}\] and α, β are the roots of \[4x + \frac{1}{x} = 3\] . Then,

 

The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

Check if the following relation is function:


Check if the following relation is function:


Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 2), (2, −1), (3, 1), (4, 3)}


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 1), (2, 1), (3, 1), (4, 1)}


If f(m) = m2 − 3m + 1, find f(−3)


Find the domain and range of the following function.

f(x) = `root(3)(x + 1)`


Express the following logarithmic equation in exponential form

`log_(1/2) (8)` = – 3


Find the domain of f(x) = ln (x − 5)


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


Prove that logbm a = `1/"m" log_"b""a"`


If `log((x + y)/3) = 1/2 log x + 1/2 logy`, show that `x/y + y/x` = 7


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


Select the correct answer from given alternative.

The domain and range of f(x) = 2 − |x − 5| is


Answer the following:

Solve for x, logx (8x – 3) – logx 4 = 2


Answer the following:

If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy


Answer the following:

Find the domain of the following function.

f(x) = x!


Answer the following:

Find the domain of the following function.

f(x) = 5–xPx–1


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


Given the function f: x → x2 – 5x + 6, evaluate f(2)


The range of 7, 11, 16, 27, 31, 33, 42, 49 is ______.


Mapping f: R → R which is defined as f(x) = sin x, x ∈ R will be ______ 


Domain of function f(x) = cos–1 6x is ______.


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find `(f/g)(x)`


Range of f(x) = `1/(1 - 2 cosx)` is ______.


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×