Advertisements
Advertisements
प्रश्न
If for non-zero x, af(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).
उत्तर
Given :
\[af\left( x \right) + bf\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] ...(i)
On adding equations (i) and (ii), we get:
\[af\left( x \right) + bf\left( x \right) + bf\left( \frac{1}{x} \right) + af\left( \frac{1}{x} \right) = \frac{1}{x} - 5 + x - 5\]
\[\Rightarrow \left( a + b \right)f\left( x \right) + \left( a + b \right)f\left( \frac{1}{x} \right) = \frac{1}{x} + x - 10\]
\[\Rightarrow f\left( x \right) + f\left( \frac{1}{x} \right) = \frac{1}{\left( a + b \right)}\left[ \frac{1}{x} + x - 10 \right]\] ...(iii)
On subtracting (ii) from (i), we get:
\[af\left( x \right) - bf\left( x \right) + bf\left( \frac{1}{x} \right) - af\left( \frac{1}{x} \right) = \frac{1}{x} - 5 - x + 5\]
\[\Rightarrow \left( a - b \right)f\left( x \right) - f\left( \frac{1}{x} \right)\left( a - b \right) = \frac{1}{x} - x\]
\[\Rightarrow f\left( x \right) - f\left( \frac{1}{x} \right) = \frac{1}{\left( a - b \right)}\left[ \frac{1}{x} - x \right]\] ...(iv)
On adding equations (iii) and (iv), we get:
\[2f\left( x \right) = \frac{1}{a + b}\left[ \frac{1}{x} + x - 10 \right] + \frac{1}{a - b}\left[ \frac{1}{x} - x \right]\]
\[\Rightarrow 2f\left( x \right) = \frac{\left( a - b \right)\left[ \frac{1}{x} + x - 10 \right] + \left( a + b \right)\left[ \frac{1}{x} - x \right]}{\left( a + b \right)\left( a - b \right)}\]
\[\Rightarrow 2f\left( x \right) = \frac{\frac{a}{x} + ax - 10a - \frac{b}{x} - bx + 10b + \frac{a}{x} - ax + \frac{b}{x} - bx}{a^2 - b^2}\]
\[\Rightarrow 2f\left( x \right) = \frac{\frac{2a}{x} - 10a + 10b - 2bx}{a^2 - b^2}\]
\[\Rightarrow f\left( x \right) = \frac{1}{a^2 - b^2} \times \frac{1}{2}\left[ \frac{2a}{x} - 10a + 10b - 2bx \right]\]
\[= \frac{1}{a^2 - b^2}\left[ \frac{a}{x} - 5a + 5b - bx \right]\]
Therefore ,
\[f\left( x \right) = \frac{1}{a^2 - b^2}\left[ \frac{a}{x} - bx - 5a + 5b \right]\]
\[= \frac{1}{a^2 - b^2}\left[ \frac{a}{x} - bx \right] - \frac{5\left( a - b \right)}{a^2 - b^2}\]
\[= \frac{1}{a^2 - b^2}\left[ \frac{a}{x} - bx \right] - \frac{5\left( a - b \right)}{\left( a - b \right)\left( a + b \right)}\]
\[= \frac{1}{a^2 - b^2}\left[ \frac{a}{x} - bx \right] - \frac{5}{\left( a + b \right)}\]
Hence,
\[f\left( x \right) = \frac{1}{a^2 - b^2}\left[ \frac{a}{x} - bx \right] - \frac{5}{\left( a + b \right)}\]
APPEARS IN
संबंधित प्रश्न
Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:
(b) pre-images of 6, −3 and 5.
A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [y: f(y) = −1].
If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]
If f(x) = (x − a)2 (x − b)2, find f(a + b).
If \[f\left( x \right) = x^3 - \frac{1}{x^3}\] , show that
If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.
If f(x) = (a − xn)1/n, a > 0 and n ∈ N, then prove that f(f(x)) = x for all x.
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(vii) f2 + 7f
Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .
Write the domain and range of the function \[f\left( x \right) = \frac{x - 2}{2 - x}\] .
Which one of the following is not a function?
If f(x) = cos (log x), then the value of f(x2) f(y2) −
If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to
If x ≠ 1 and \[f\left( x \right) = \frac{x + 1}{x - 1}\] is a real function, then f(f(f(2))) is
If \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) =
The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =
The domain of definition of \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is
The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is
Check if the following relation is function:
Check if the relation given by the equation represents y as function of x:
x2 − y = 25
If f(m) = m2 − 3m + 1, find f(x + 1)
Find the domain and range of the following function.
f(x) = `sqrt((x - 3)/(7 - x))`
Express the following exponential equation in logarithmic form
3–4 = `1/81`
Express the following exponential equation in logarithmic form
e2 = 7.3890
Express the following exponential equation in logarithmic form
e–x = 6
Express the following logarithmic equation in exponential form
log2 64 = 6
Find the domain of f(x) = ln (x − 5)
Select the correct answer from given alternatives.
If log (5x – 9) – log (x + 3) = log 2 then x = ...............
Answer the following:
If b2 = ac. prove that, log a + log c = 2 log b
Answer the following:
Solve : `sqrt(log_2 x^4) + 4log_4 sqrt(2/x)` = 2
Answer the following:
Find the range of the following function.
f(x) = `1/(1 + sqrt(x))`
Answer the following:
Find the range of the following function.
f(x) = [x] – x
Answer the following:
Find (f ° g) (x) and (g ° f) (x)
f(x) = `x/(x + 1)`, g(x) = `x/(1 - x)`
The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.
Length ‘x’ of forehand (in cm) |
Height 'y' (in inches) |
35 | 56 |
45 | 65 |
50 | 69.5 |
55 | 74 |
Find a and b
Find the domain of the following function.
f(x) = `x/(x^2 + 3x + 2)`
Find the range of the following functions given by `sqrt(16 - x^2)`
Find the range of the following functions given by f(x) = |x − 3|
The range of the function y = `1/(2 - sin3x)` is ______.
The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.