हिंदी

The Domain of Definition of F ( X ) = √ X − 3 − 2 √ X − 4 − √ X − 3 + 2 √ X − 4 is (A) [4, ∞) (B) (−∞, 4] (C) (4, ∞) (D) (−∞, 4) - Mathematics

Advertisements
Advertisements

प्रश्न

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 

विकल्प

  • (a) [4, ∞)

  • (b) (−∞, 4]

  • (c) (4, ∞)

  • (d) (−∞, 4)

     
MCQ

उत्तर

(a) [4, ∞)  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\]

\[\text{ For f(x) to be defined } , x - 4 \geq 0\]

\[ \Rightarrow x - 4 \geq 0\]

\[ \Rightarrow x \geq 4 . . . . (1)\]

\[\text{ Also} , x - 3 - 2\sqrt{x - 4} \geq 0\]

\[ \Rightarrow x - 3 - 2\sqrt{x - 4} \geq 0\]

\[ \Rightarrow x - 3 \geq 2\sqrt{x - 4}\]

\[ \Rightarrow (x - 3 )^2 \geq \left( 2\sqrt{x - 4} \right)^2 \]

\[ \Rightarrow x^2 + 9 - 6x \geq 4\left( x - 4 \right)\]

\[ \Rightarrow x^2 - 10x + 25 \geq 0\]

\[ \Rightarrow (x - 5) {}^2 \geq 0, \text{ which is always true .}  \]

\[\text{ Similarly,}  x - 3 + 2\sqrt{x - 4} \geq 0 \text{ is always true } . \]

\[\text{ Thus, dom } (f(x)) = [4, \infty )\]

 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 38 | पृष्ठ ४५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


Write the domain and range of function f(x) given by

\[f\left( x \right) = \frac{1}{\sqrt{x - \left| x \right|}}\] .
 

Let A = {1, 2, 3} and B = {2, 3, 4}. Then which of the following is a function from A to B? 

 


Which of the following are functions?


If A = {1, 2, 3} and B = {xy}, then the number of functions that can be defined from A into B is


The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

The domain of the function \[f\left( x \right) = \sqrt{\frac{\left( x + 1 \right) \left( x - 3 \right)}{x - 2}}\] is

  

The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is 

 

The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


Check if the following relation is function:


If ƒ(m) = m2 − 3m + 1, find f(x + 1)


Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


Check if the following relation is a function.


Find the domain and range of the following function.

f(x) = `root(3)(x + 1)`


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 


Write the following expression as a single logarithm.

ln (x + 2) + ln (x − 2) − 3 ln (x + 5)


Prove that `"b"^(log_"b""a"` = a


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Answer the following:

Let f : R → R be given by f(x) = x3 + 1 for all x ∈ R. Draw its graph


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Let f = {(x, y) | x, y ∈ N and y = 2x} be a relation on N. Find the domain, co-domain and range. Is this relation a function?


Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


Given the function f: x → x2 – 5x + 6, evaluate f(2)


A graph representing the function f(x) is given in it is clear that f(9) = 2

Describe the following Range


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Check if this relation is a function


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

Write an expression for gf(x) in its simplest form


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (fg)(x)


The function f: R `rightarrow` R defined by f(x) = sin x is ______.


Which of the following functions is NOT one-one?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×