हिंदी

Answer the following: Without using log tables, prove that 25<log103<12 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`

योग

उत्तर

We have to show that, `2/5 < log_10 3 < 1/2`

i.e., to show that,

`2/5 < log_10 3` and `log_10 3 < 1/2`

i.e., to show that,

2 < 5log103 and 2 log103 < 1

i.e., to show that,

2 log1010 < 5 log103 and 2 log103 < log1010  ...[∵ log1010 = 1]

i.e., to show that,

log10102 < log1035 and log1032 < log1010

i.e., to show that,

102 < 35 and 32 < 10

i.e., to show that,

100 < 243 and 9 < 10

which is true

∴ `2/5 < log_10 3 < 1/2`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Functions - Miscellaneous Exercise 6.2 [पृष्ठ १३१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Functions
Miscellaneous Exercise 6.2 | Q II. (31) | पृष्ठ १३१

संबंधित प्रश्न

Let A = {9, 10, 11, 12, 13} and let f: A → N be defined by f(n) = the highest prime factor of n. Find the range of f.


et A = (12, 13, 14, 15, 16, 17) and f : A → Z be a function given by
f(x) = highest prime factor of x.
Find range of f.


The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vii) f2 + 7f


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

The range of f(x) = cos [x], for π/2 < x < π/2 is


Which of the following are functions?


If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is 

 

The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


Check if the following relation is a function.


If f(m) = m2 − 3m + 1, find f(−3)


If f(m) = m2 − 3m + 1, find `f(1/2)`


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2


If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b


Find the domain and range of the follwoing function.

h(x) = `sqrt(x + 5)/(5 + x)`


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x2 


Express the following exponential equation in logarithmic form

10−2 = 0.01


Express the following exponential equation in logarithmic form

`"e"^(1/2)` = 1.6487


Express the following logarithmic equation in exponential form

`log_5  1/25` = – 2


Write the following expression as a single logarithm.

5 log x + 7 log y − log z


Prove that `"b"^(log_"b""a"` = a


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Select the correct answer from given alternatives.

If f(x) =`1/(1 - x)`, then f{f[f(x)]} is


Answer the following:

Find the range of the following function.

f(x) = |x – 5|


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


Find the domain of the following functions given by f(x) = `1/sqrt(x + |x|)`


Domain of `sqrt(a^2 - x^2)  (a > 0)` is ______.


The domain of the function f defined by f(x) = `sqrt(4 - x) + 1/sqrt(x^2 - 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×