हिंदी

If F : [−2, 2] → R is Defined by F ( X ) = { − 1 , for − 2 ≤ X ≤ 0 X − 1 , for 0 ≤ X ≤ 2 , Then {X ∈ [−2, 2] : X ≤ 0 and F (|X|) = X} =(A) {−1} (B) {0} (C) { − 1 2 }(D) ϕ - Mathematics

Advertisements
Advertisements

प्रश्न

If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

विकल्प

  • (a) {−1}

  • (b) {0}

  • (c) \[\left\{ - \frac{1}{2} \right\}\]

  • (d) ϕ

     
MCQ

उत्तर

(c) \[\left\{ - \frac{1}{2} \right\}\] 

Given:

\[f\left( x \right) = \begin{cases}- 1, &  \text { for } - 2 \leq x \leq 0 \\ x - 1, &\text{  for }  0 \leq x \leq 2\end{cases}\]We know,  \[\left| x \right| \geq 0\]

⇒  \[f\left( \left| x \right| \right) = \left| x \right| - 1\]      ...(1)
Also,
If  \[x \leq 0\] , then \[\left| x \right| = - x\]    ...(2)
 
∴ {x ∈ [−2, 2]: x ≤ 0 and f (|x|) = x
=\[\left\{ x: \left| x \right| - 1 = x \right\} [\text{ Using } (1)]\]
=\[\left\{ x: - x - 1 = x \right\} [\text{ Using }  (2)]\]
\[\left\{ x: 2x = \frac{- 1}{2} \right\}\]
 =\[\left\{ x: x = \frac{- 1}{2} \right\}\]
=\[\left\{ \frac{- 1}{2} \right\}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Functions - Exercise 3.6 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 3 Functions
Exercise 3.6 | Q 24 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


et A = (12, 13, 14, 15, 16, 17) and f : A → Z be a function given by
f(x) = highest prime factor of x.
Find range of f.


If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]


If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.

 

 


If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]

for all x ∈ R − {0}, then write the expression for f(x).

 
 

If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


Let f : R → R be defined by f(x) = 2x + |x|. Then f(2x) + f(−x) − f(x) =


The domain of definition of the function f(x) = log |x| is


If f(m) = m2 − 3m + 1, find f(0)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


A function f is defined as follows: f(x) = 5 − x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


Check if the following relation is a function.


Check if the following relation is a function.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 3), (4, 1), (2, 2)}


If f(m) = m2 − 3m + 1, find f(0)


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Find the domain and range of the following function.

f(x) = `sqrt((x - 3)/(7 - x))`


Let f be a subset of Z × Z defined by f = {(ab, a + b) : a, b ∈ Z}. Is f a function from Z to Z? Justify?


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 


Given that log 2 = a and log 3 = b, write `log sqrt(96)` in terms of a and b


If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Answer the following:

A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist


Answer the following:
If log3 [log2 (log3x)] = 1, show that x = 6561

Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = `x/(x + 1)`, g(x) = `x/(1 - x)`


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Check if this relation is a function


A function f is defined by f(x) = 2x – 3 find x such that f(x) = f(1 – x)


Let A = {1, 2, 3, 4} and B = N. Let f : A → B be defined by f(x) = x3 then, find the range of f


Let A and B be any two sets such that n(B) = p, n(A) = q then the total number of functions f : A → B is equal to ______.


Find the range of the following functions given by f(x) = |x − 3|


Redefine the function f(x) = x − 2 + 2 + x , – 3 ≤ x ≤ 3


Let f(θ) = sin θ (sin θ + sin 3θ) then ______.


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×