मराठी

If F : [−2, 2] → R is Defined by F ( X ) = { − 1 , for − 2 ≤ X ≤ 0 X − 1 , for 0 ≤ X ≤ 2 , Then {X ∈ [−2, 2] : X ≤ 0 and F (|X|) = X} =(A) {−1} (B) {0} (C) { − 1 2 }(D) ϕ - Mathematics

Advertisements
Advertisements

प्रश्न

If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

पर्याय

  • (a) {−1}

  • (b) {0}

  • (c) \[\left\{ - \frac{1}{2} \right\}\]

  • (d) ϕ

     
MCQ

उत्तर

(c) \[\left\{ - \frac{1}{2} \right\}\] 

Given:

\[f\left( x \right) = \begin{cases}- 1, &  \text { for } - 2 \leq x \leq 0 \\ x - 1, &\text{  for }  0 \leq x \leq 2\end{cases}\]We know,  \[\left| x \right| \geq 0\]

⇒  \[f\left( \left| x \right| \right) = \left| x \right| - 1\]      ...(1)
Also,
If  \[x \leq 0\] , then \[\left| x \right| = - x\]    ...(2)
 
∴ {x ∈ [−2, 2]: x ≤ 0 and f (|x|) = x
=\[\left\{ x: \left| x \right| - 1 = x \right\} [\text{ Using } (1)]\]
=\[\left\{ x: - x - 1 = x \right\} [\text{ Using }  (2)]\]
\[\left\{ x: 2x = \frac{- 1}{2} \right\}\]
 =\[\left\{ x: x = \frac{- 1}{2} \right\}\]
=\[\left\{ \frac{- 1}{2} \right\}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 24 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(a) f1 = {(1, 1), (2, 11), (3, 1), (4, 15)} 


If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


If  \[f\left( x \right) = x^3 - \frac{1}{x^3}\] , show that

\[f\left( x \right) + f\left( \frac{1}{x} \right) = 0 .\]
 

 


If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is 


If f(x) = cos (loge x), then \[f\left( \frac{1}{x} \right)f\left( \frac{1}{y} \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\}\] is equal to

 

Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


If  \[f\left( x \right) = 64 x^3 + \frac{1}{x^3}\] and α, β are the roots of \[4x + \frac{1}{x} = 3\] . Then,

 

Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


If f(m) = m2 − 3m + 1, find f(−3)


Check if the following relation is a function.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 2), (2, −1), (3, 1), (4, 3)}


Check if the relation given by the equation represents y as function of x:

x2 − y = 25


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Show that if f : A → B and g : B → C are onto, then g ° f is also onto


Express the following logarithmic equation in exponential form

`log_5  1/25` = – 2


Select the correct answer from given alternative.

The domain and range of f(x) = 2 − |x − 5| is


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


Answer the following:

If f(x) = 3x4 – 5x2 + 7 find f(x – 1)


Answer the following:

If `log (("a" + "b")/2) = 1/2(log"a" + log"b")`, then show that a = b


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


A graph representing the function f(x) is given in it is clear that f(9) = 2

Describe the following Range


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


A function f is defined by f(x) = 3 – 2x. Find x such that f(x2) = (f(x))2


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the height of a person whose forehand length is 40 cm


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

 Calculate the value of `"gg" (1/2)`


The range of 7, 11, 16, 27, 31, 33, 42, 49 is ______.


If f(x) = 5x - 3, then f-1(x) is ______ 


If a function f(x) is given as f(x) = x2 – 6x + 4 for all x ∈ R, then f(–3) = ______.


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


Find the domain of the following function.

f(x) = `x/(x^2 + 3x + 2)`


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f – g)(x)


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


The function f: R `rightarrow` R defined by f(x) = sin x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×