मराठी

If F : R → R and G : R → R Are Defined by F(X) = 2x + 3 and G(X) = X2 + 7, Then the Values of X Such that G(F(X)) = 8 Are (A) 1, 2 (B) −1, 2 (C) −1, −2 (D) 1, −2(A) 1, 2 (B) −1, 2 (C) −1, −2 (D) 1, −2 - Mathematics

Advertisements
Advertisements

प्रश्न

If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are

पर्याय

  • (a) 1, 2

  • (b) −1, 2

  • (c) −1, −2

  • (d) 1, −2

     
MCQ

उत्तर

(c) −1, −2
f(x) = 2x + 3 and g(x) = x2 + 7

\[g(f(x)) = 8\]

\[ \Rightarrow \left( f(x) \right)^2 + 7 = 8\]

\[ \Rightarrow (2x + 3 )^2 + 7 = 8\]

\[ \Rightarrow x^2 + 3x + 2 = 0\]

\[ \Rightarrow (x + 2)(x + 1) = 0\]

\[ \Rightarrow x = - 1, - 2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 23 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

fgh are three function defined from R to R as follow:

(ii) g(x) = sin x

Find the range of function.


Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(c) f3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}

 

 


If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


If for non-zero xaf(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(ii) fg


Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

If  \[f\left( x \right) = 64 x^3 + \frac{1}{x^3}\] and α, β are the roots of \[4x + \frac{1}{x} = 3\] . Then,

 

The domain of the function

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\] is
 

The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


If f(m) = m2 − 3m + 1, find f(− x)


Find the domain and range of the following function.

f(x) = `sqrt((x - 3)/(7 - x))`


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Show that if f : A → B and g : B → C are one-one, then g ° f is also one-one


lf f(x) = 3(4x+1), find f(– 3)


Write the following expression as a single logarithm.

ln (x + 2) + ln (x − 2) − 3 ln (x + 5)


Answer the following:

If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy


Answer the following:

If a2 = b3 = c4 = d5, show that loga bcd = `47/30`


A graph representing the function f(x) is given in it is clear that f(9) = 2

 Describe the following Domain


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the height of a person whose forehand length is 40 cm


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

Write an expression for gf(x) in its simplest form


If a function f(x) is given as f(x) = x2 – 6x + 4 for all x ∈ R, then f(–3) = ______.


Find the domain for which the functions f(x) = 2x2 – 1 and g(x) = 1 – 3x are equal.


Find the domain of the following function.

f(x) = [x] + x


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find `(f/g)(x)`


The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.


The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.


The range of the function y = `1/(2 - sin3x)` is ______.


The function f: R `rightarrow` R defined by f(x) = sin x is ______.


If f: R `rightarrow` R be a function defined by f(x) = 4x3 – 7. Then ______.


The range of the function f(x) = `""^(7 - x)P_(x - 3)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×