मराठी

If F ( X ) = 64 X 3 + 1 X 3 and α, β Are the Roots of 4 X + 1 X = 3 . Then, (A) F(α) = F(β) = −9 (B) F(α) = F(β) = 63 (C) F(α) ≠ F(β) (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = 64 x^3 + \frac{1}{x^3}\] and α, β are the roots of \[4x + \frac{1}{x} = 3\] . Then,

 

पर्याय

  • (a) f(α) = f(β) = −9

  • (b) f(α) = f(β) = 63

  • (c) f(α) ≠ f(β)

  • (d) none of these

     
MCQ

उत्तर

(a) f(α) = f(β) = −9  

Given:\[f\left( x \right) = 64 x^3 + \frac{1}{x^3}\]

\[\Rightarrow f\left( x \right) = \left( 4x + \frac{1}{x} \right)\left( 16 x^2 + \frac{1}{x^2} - 4 \right)\]

\[\Rightarrow f\left( x \right) = \left( 4x + \frac{1}{x} \right)\left( \left( 4x + \frac{1}{x} \right)^2 - 12 \right)\]

\[\Rightarrow f\left( \alpha \right) = \left( 4\alpha + \frac{1}{\alpha} \right)\left( \left( 4\alpha + \frac{1}{\alpha} \right)^2 - 12 \right)\text{ and } f\left( \beta \right) = \left( 4\beta + \frac{1}{\beta} \right)\left( \left( 4\beta + \frac{1}{\beta} \right)^2 - 12 \right)\] Since α and β are the roots of \[4x + \frac{1}{x} = 3\] \[4\alpha + \frac{1}{\alpha} = 3 \text{ and } 4\beta + \frac{1}{\beta} = 3\] \[\Rightarrow f\left( \alpha \right) = 3\left( \left( 3 \right)^2 - 12 \right) = - 9\]  and \[f\left( \beta \right) = 3\left( \left( 3 \right)^2 - 12 \right) = - 9\] \[\Rightarrow f\left( \alpha \right) = f\left( \beta \right) = - 9\]

 
 
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 27 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [yf(y) = −1].


Write the domain and range of  \[f\left( x \right) = \sqrt{x - \left[ x \right]}\] .

 

Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


If f(x) = cos (log x), then the value of f(x2f(y2) −

\[\frac{1}{2}\left\{ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right\}\] is
 

If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


The domain of the function

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\] is
 

The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


Check if the following relation is a function.


If f(m) = m2 − 3m + 1, find f(−3)


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Express the following exponential equation in logarithmic form

54° = 1


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Express the following exponential equation in logarithmic form

e2 = 7.3890


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Express the following logarithmic equation in exponential form

ln e = 1


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)


Select the correct answer from given alternatives

The domain of `1/([x] - x)` where [x] is greatest integer function is


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Answer the following:

If f(x) = 3x + a and f(1) = 7 find a and f(4)


Answer the following:

If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b


Answer the following:

Let f : R → R be given by f(x) = x + 5 for all x ∈ R. Draw its graph


Answer the following:

Find x, if x = 33log32  


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


The domain of the real valued function f(x) = `sqrt((x - 2)/(3 - x))` is ______.


Find the range of the following functions given by f(x) = |x − 3|


Redefine the function f(x) = x − 2 + 2 + x , – 3 ≤ x ≤ 3


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


If f(x) = `(x - 1)/(x + 1)`, then show that `f(- 1/x) = (-1)/(f(x))`


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.


Which of the following functions is NOT one-one?


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×