मराठी

The Domain of Definition of F ( X ) = √ 4 X − X 2 is (A) R − [0, 4] (B) R − (0, 4) (C) (0, 4) (D) [0, 4] - Mathematics

Advertisements
Advertisements

प्रश्न

The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

पर्याय

  • (a) R − [0, 4]

  • (b) R − (0, 4)

  • (c) (0, 4)

  • (d) [0, 4]

     
MCQ

उत्तर

(d) [0, 4]

Given: 
\[f\left( x \right) = \sqrt{4x - x^2}\]
Clearly, f (x) assumes real values if 4xx2 ≥ 0
⇒ x(4 - x) ≥ 0
 ⇒ -x(x -4) ≥ 0
⇒ x(x -4) ≤ 0
⇒ x ∈ [0, 4]
Hence, domain (f )= [0, 4].
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 37 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f(x) = x2, find `(f(1.1) - f(1))/((1.1 - 1))`


Let A = {9, 10, 11, 12, 13} and let f: A → N be defined by f(n) = the highest prime factor of n. Find the range of f.


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

If A = {1, 2, 3} and B = {xy}, then the number of functions that can be defined from A into B is


If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,

 
 

If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


If f(m) = m2 − 3m + 1, find f(−3)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2


Find the domain and range of the following function.

f(x) = `sqrt((x - 3)/(7 - x))`


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following exponential equation in logarithmic form

10−2 = 0.01


Express the following logarithmic equation in exponential form

log2 64 = 6


Find the domain of f(x) = ln (x − 5)


Write the following expression as a single logarithm.

`1/3 log (x - 1) + 1/2 log (x)`


Solve for x.

log2 + log(x + 3) – log(3x – 5) = log3


If `log((x + y)/3) = 1/2 log x + 1/2 logy`, show that `x/y + y/x` = 7


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Answer the following:
If log3 [log2 (log3x)] = 1, show that x = 6561

Answer the following:

If `log_2"a"/4 = log_2"b"/6 = log_2"c"/(3"k")` and a3b2c = 1 find the value of k


Answer the following:

Find the range of the following function.

f(x) = |x – 5|


Let f = {(x, y) | x, y ∈ N and y = 2x} be a relation on N. Find the domain, co-domain and range. Is this relation a function?


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

 Calculate the value of `"gg" (1/2)`


Find the domain for which the functions f(x) = 2x2 – 1 and g(x) = 1 – 3x are equal.


Find the range of the following functions given by `|x - 4|/(x - 4)`


Find the range of the following functions given by `sqrt(16 - x^2)`


The domain of the function f defined by f(x) = `1/sqrt(x - |x|)` is ______.


The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.


The range of the function y = `1/(2 - sin3x)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×