मराठी

The Range of the Function F ( X ) = X 2 − X X 2 + 2 X Is(A) R (B) R − {1} (C) R − {−1/2, 1} (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

पर्याय

  • (a) R

  • (b) R − {1}

  • (c) R − {−1/2, 1}

  • (d) None of these

     
MCQ

उत्तर

(c) R − {−1/2, 1}

\[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]
\[\text{ Let }  y = \frac{x^2 - x}{x^2 + 2x} \left[\text{  Also,}  x \neq 0 \right]\]
\[ \Rightarrow y = \frac{x(x - 1)}{x(x + 2)}\]
\[ \Rightarrow y = \frac{(x - 1)}{(x + 2)}\]
\[ \Rightarrow xy + 2y = x - 1\]
\[ \Rightarrow x = \frac{2y + 1}{1 - y}\]
\[\text{ Here } , 1 - y \neq 0 . \]
\[\text{ or } , y \neq 1 . \]
\[\text{ Also } , x \neq 0\]
\[ \Rightarrow \frac{2y + 1}{1 - y} \neq 0\]
\[ \Rightarrow y \neq - \frac{1}{2}\]
\[\text{ Thus, range  } (f) = R - { - \frac{1}{2}, 1} . \]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 16 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]


If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(i) f + g

 
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iii) f g


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


If f(m) = m2 − 3m + 1, find `f(1/2)`


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 1), (2, 1), (3, 1), (4, 1)}


If f(m) = m2 − 3m + 1, find f(0)


Find x, if g(x) = 0 where g(x) = `(18 -2x^2)/7`


Find the domain and range of the following function.

f(x) = `root(3)(x + 1)`


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Express the following exponential equation in logarithmic form

3–4 = `1/81`


The equation logx2 16 + log2x 64 = 3 has,


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Select the correct answer from given alternatives

If f(x) = 2x2 + bx + c and f(0) = 3 and f(2) = 1, then f(1) is equal to


Answer the following:

Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Answer the following:

Find the range of the following function.

f(x) = `x/(9 + x^2)`


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


A graph representing the function f(x) is given in it is clear that f(9) = 2

For what value of x is f(x) = 1?


A graph representing the function f(x) is given in it is clear that f(9) = 2

 Describe the following Domain


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


Mapping f: R → R which is defined as f(x) = sin x, x ∈ R will be ______ 


Find the range of the following functions given by `|x - 4|/(x - 4)`


Find the range of the following functions given by `sqrt(16 - x^2)`


Find the domain of the following functions given by f(x) = x|x|


The domain of the function f given by f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` is ______.


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×