Advertisements
Advertisements
प्रश्न
Answer the following:
Find the range of the following function.
f(x) = `x/(9 + x^2)`
उत्तर
f(x) = `x/(9 + x^2)`
Let y = f(x)
∴ y = `x/(9 + x^2)`
∴ yx2 + 9y = x
∴ yx2 – x + 9y = 0
This is a quadratic equation in x
∵ x is real
∴ Δ ≥ 0
∴ ( – 1)2 – 4(y)(9y) ≥ 0
∴ 1 – 36y2 ≥ 0
∴ 36y2 ≤ 1
∴ `y^2 ≤ 1/36`
∴ `-1/6 ≤ y ≤ 1/6`
∴ Range = `[-1/6, 1/6]`.
APPEARS IN
संबंधित प्रश्न
f, g, h are three function defined from R to R as follow:
(ii) g(x) = sin x
Find the range of function.
Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.
(a) f1 = {(1, 1), (2, 11), (3, 1), (4, 15)}
Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(vi) \[2f - \sqrt{5} g\]
Let f(x) = x2 and g(x) = 2x+ 1 be two real functions. Find (f + g) (x), (f − g) (x), (fg) (x) and \[\left( \frac{f}{g} \right) \left( x \right)\] .
Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .
Let f and g be two functions given by
f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.
Find the domain of f + g
Which one of the following is not a function?
Which of the following are functions?
If A = {1, 2, 3} and B = {x, y}, then the number of functions that can be defined from A into B is
If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\] is equal to
If f(x) = cos (log x), then value of \[f\left( x \right) f\left( 4 \right) - \frac{1}{2} \left\{ f\left( \frac{x}{4} \right) + f\left( 4x \right) \right\}\] is
The range of the function \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\] is
The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =
Let \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?
If f(m) = m2 − 3m + 1, find f(−3)
Which of the following relations are functions? If it is a function determine its domain and range:
{(1, 1), (3, 1), (5, 2)}
A function f is defined as follows: f(x) = 5 − x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3
If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.
Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.
{(1, 1), (2, 1), (3, 1), (4, 1)}
Check if the relation given by the equation represents y as function of x:
x2 − y = 25
Find x, if g(x) = 0 where g(x) = `(5x - 6)/7`
Express the following exponential equation in logarithmic form
`"e"^(1/2)` = 1.6487
If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)
If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)
Answer the following:
Simplify, log (log x4) – log (log x)
Answer the following:
Find the domain of the following function.
f(x) = 5–xPx–1
Answer the following:
Find the range of the following function.
f(x) = `1/(1 + sqrt(x))`
Answer the following:
Find the range of the following function.
f(x) = [x] – x
A function f is defined by f(x) = 2x – 3 find x such that f(x) = 0
A function f is defined by f(x) = 2x – 3 find x such that f(x) = x
A function f is defined by f(x) = 3 – 2x. Find x such that f(x2) = (f(x))2
A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour
Let A and B be any two sets such that n(B) = p, n(A) = q then the total number of functions f : A → B is equal to ______.
Range of f(x) = `1/(1 - 2 cosx)` is ______.
Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If f(g(x)) = 8x2 – 2x, and g(f(x)) = 4x2 + 6x + 1, then the value of f(2) + g(2) is ______.
If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to ______.
lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.
The range of the function f(x) = `""^(7 - x)P_(x - 3)` is ______.
Range of the function f(x) = `x/(1 + x^2)` is ______.