Advertisements
Advertisements
प्रश्न
Answer the following:
Find the domain of the following function.
f(x) = 5–xPx–1
उत्तर
f(x) = 5–xPx–1
nPr is defined if n ∈ N, r ∈ Wand r ≤ n
∴ x – 1 ≤ 5 – x
∴ 2x ≤ 6
∴ x ≤ 3
For x ∈ W and x ≤ 3, x = 0, 1, 2, 3
But if x = 0, x – 1 = – 1 < 0
∴ x ≠ 0
∴ x = 1, 2, 3
∴ the solution set is {1, 2, 3}.
APPEARS IN
संबंधित प्रश्न
f, g, h are three function defined from R to R as follow:
(i) f(x) = x2
Find the range of function.
If f(x) = loge (1 − x) and g(x) = [x], then determine function:
(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),
Let f(x) = x2 and g(x) = 2x+ 1 be two real functions. Find (f + g) (x), (f − g) (x), (fg) (x) and \[\left( \frac{f}{g} \right) \left( x \right)\] .
Write the range of the real function f(x) = |x|.
Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .
Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.
Let f and g be two real functions given by
f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}
Find the domain of fg.
If f : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for } - 2 \leq x \leq 0 \\ x - 1, & \text{ for } 0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =
The domain of definition of \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is
The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is
Which of the following relations are functions? If it is a function determine its domain and range:
{(1, 1), (3, 1), (5, 2)}
A function f is defined as follows: f(x) = 5 − x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3
If f(x) = 3x + a and f(1) = 7 find a and f(4).
If f(x) = `{(x^2 + 3"," x ≤ 2),(5x + 7"," x > 2):},` then find f(0)
Check if the following relation is a function.
Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.
{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}
Find the domain and range of the following function.
f(x) = `sqrt((x - 3)/(7 - x))`
Express the area A of circle as a function of its diameter d
Check the injectivity and surjectivity of the following function.
f : Z → Z given by f(x) = x2
lf f(x) = 3(4x+1), find f(– 3)
Express the following exponential equation in logarithmic form
25 = 32
Express the following logarithmic equation in exponential form
In `1/2` = – 0.693
Find the domain of f(x) = ln (x − 5)
Write the following expression as a single logarithm.
5 log x + 7 log y − log z
Prove that `"b"^(log_"b""a"` = a
Answer the following:
A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist
Answer the following:
Show that, `log ("a"^2/"bc") + log ("b"^2/"ca") + log ("c"^2/"ab")` = 0
Answer the following:
Simplify `log_10 28/45 - log_10 35/324 + log_10 325/432 - log_10 13/15`
Answer the following:
If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy
Answer the following:
Find the domain of the following function.
f(x) = `(x^2 + 4x + 4)/(x^2 + x - 6)`
A graph representing the function f(x) is given in it is clear that f(9) = 2
Find the following values of the function
(a) f(0)
(b) f(7)
(c) f(2)
(d) f(10)
A function f is defined by f(x) = 2x – 3 find x such that f(x) = x
A function f is defined by f(x) = 3 – 2x. Find x such that f(x2) = (f(x))2
A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour
The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.
Length ‘x’ of forehand (in cm) |
Height 'y' (in inches) |
35 | 56 |
45 | 65 |
50 | 69.5 |
55 | 74 |
Find a and b
Find the range of the following functions given by `|x - 4|/(x - 4)`
Find the domain of the following function given by:
f(x) = `(3x)/(2x - 8)`
The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.
lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.