मराठी

If F(X) = Loge (1 − X) and G(X) = [X], Then Determine Function: (Iv) G F Also, Find (F + G) (−1), (Fg) (0), ( F G ) ( 1 2 ) , ( G F ) ( 1 2 ) - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iv) \[\frac{g}{f}\] Also, find (f + g) (−1), (fg) (0),

\[\left( \frac{f}{g} \right) \left( \frac{1}{2} \right), \left( \frac{g}{f} \right) \left( \frac{1}{2} \right)\]
 
 

उत्तर

Given:
f(x) = loge (1 − x) and g(x) = [x]
Clearly, f(x) = loge (1 − x)  is defined for all ( 1 -x)  > 0.
⇒ 1 > x
⇒ x < 1
⇒ x ∈ ( -∞, 1)
Thus, domain () = ( - ∞, 1)

Again,
g(x) = [x] is defined for all x ∈ R.
Thus, domain (g) = R
∴ Domain (f) ∩ Domain (g) = ( - ∞, 1) ∩ R      = ( -∞, 1)

Hence,

(iv) Given:
f(x) = loge (1 − x)

\[\Rightarrow \frac{1}{f\left( x \right)} = \frac{1}{\log_e \left( 1 - x \right)}\]
\[\frac{1}{f\left( x \right)}\]   is defined if loge( 1 -x) is defined and loge(1 – x) ≠ 0.
⇒ (1 - x) > 0 and (1 - x) ≠ 0
⇒ x < 1 and x ≠ 0
⇒ x ∈ ( -∞, 0)∪ (0, 1)
Thus,
\[\text{ domain } \left( \frac{g}{f} \right) = \left( - \infty , 0 \right) \cup \left( 0, 1 \right)\]  = ( - ∞, 1)  .
\[\frac{g}{f}: \left( - \infty , 0 \right) \cup \left( 0, 1 \right) \to \text{ R defined by } \left( \frac{g}{f} \right)\left( x \right) = \frac{g\left( x \right)}{f\left( x \right)} = \frac{\left[ x \right]}{\log_e \left( 1 - x \right)}\]
(f + g)( -1) = f(-1) + g( -1)
 = loge{1 – (-1)}+ [ -1]
= loge  2 – 1
Hence, (f + g)( -1) = loge  2 – 1
(fg)(0) = loge ( 1 – 0) × [0] = 0
\[\left( \frac{f}{g} \right)\left( \frac{1}{2} \right) = \text{ does not exist}  . \]
\[\left( \frac{g}{f} \right)\left( \frac{1}{2} \right) = \frac{\left[ \frac{1}{2} \right]}{\log_e \left( 1 - \frac{1}{2} \right)} = 0\]
 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.4 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.4 | Q 5.4 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(c) whether f(xy) = f(x) : f(y) holds

 

The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vii) f2 + 7f


If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

Write the range of the function f(x) = sin [x], where \[\frac{- \pi}{4} \leq x \leq \frac{\pi}{4}\] . 


Write the range of the function f(x) = ex[x]x ∈ R.

 

Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If f(x) = cos (log x), then the value of f(x2f(y2) −

\[\frac{1}{2}\left\{ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right\}\] is
 

The range of f(x) = cos [x], for π/2 < x < π/2 is


If A = {1, 2, 3} and B = {xy}, then the number of functions that can be defined from A into B is


The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

The range of the function \[f\left( x \right) = \frac{x + 2}{\left| x + 2 \right|}\],x ≠ −2 is

 

Which of the following relations are functions? If it is a function determine its domain and range:

{(1, 1), (3, 1), (5, 2)}


A function f is defined as follows: f(x) = 5 − x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


If f(m) = m2 − 3m + 1, find f(− x)


Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


An open box is made from a square of cardboard of 30 cms side, by cutting squares of length x centimeters from each corner and folding the sides up. Express the volume of the box as a function of x. Also find its domain


Write the following expression as a single logarithm.

5 log x + 7 log y − log z


Solve for x.

2 log10 x = `1 + log_10 (x + 11/10)`


If `log(( x - y)/4) = logsqrt(x) + log sqrt(y)`, show that (x + y)2 = 20xy 


Select the correct answer from given alternatives

If f(x) = 2x2 + bx + c and f(0) = 3 and f(2) = 1, then f(1) is equal to


Answer the following:

If f(x) = 3x4 – 5x2 + 7 find f(x – 1)


The range of the function f(x) = `(x - 3)/(5 - x)`, x ≠ 5 is ______.


If a function f(x) is given as f(x) = x2 – 6x + 4 for all x ∈ R, then f(–3) = ______.


Let f : R → R be defined by 

f(x) = `{(3x;    x > 2),(2x^2;    1 ≤ x ≤ 2), (4x;   x < 1):}`

Then f(-2) + f(1) + f(3) is ______ 


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


If f(x) = `x^3 - 1/x^3`, then `f(x) + f(1/x)` is equal to ______.


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


Range of f(x) = `1/(1 - 2 cosx)` is ______.


The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.


If f(x) = `log_e{((1 - x))/((1 - x))}, |x| < 1, f{(2x)/((1 + x^2))}` is equal to ______.


The expression \[\begin{array}{cc}\log_p\log_p\sqrt[p]{\sqrt[p]{\sqrt[p]{\text{...........}\sqrt[p]{p}}}}\\
\phantom{...........}\ce{\underset{n radical signs}{\underline{\uparrow\phantom{........}\uparrow}}}
\end{array}\]where p ≥ 2, p ∈ N; ∈ N when simplified is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×