मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist

बेरीज

उत्तर

f(x) = 4x + 5, – 4 ≤ x < 0

f(–1) = 4(–1) + 5 = –4 + 5 = 1

f(–2) = 4(–2) + 5 = –8 + 5 = –3

x = 0 ∉ domain of f

∴ f(0) does not exist.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Functions - Miscellaneous Exercise 6.2 [पृष्ठ १३०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 6 Functions
Miscellaneous Exercise 6.2 | Q II. (6) | पृष्ठ १३०

संबंधित प्रश्‍न

Define a function as a correspondence between two sets.

 

A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [yf(y) = −1].


Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]

for all x ∈ R − {0}, then write the expression for f(x).

 
 

Write the range of the function f(x) = sin [x], where \[\frac{- \pi}{4} \leq x \leq \frac{\pi}{4}\] . 


Which of the following are functions?


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


If f : R → R be given by for all \[f\left( x \right) = \frac{4^x}{4^x + 2}\]  x ∈ R, then

 

If f(m) = m2 − 3m + 1, find f(0)


If f(m) = m2 − 3m + 1, find f(− x)


Which of the following relations are functions? If it is a function determine its domain and range:

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 3), (4, 1), (2, 2)}


If f(m) = m2 − 3m + 1, find `(("f"(2 + "h") - "f"(2))/"h"), "h" ≠ 0`


Find x, if g(x) = 0 where g(x) = `(18 -2x^2)/7`


Find x, if g(x) = 0 where g(x) = 6x2 + x − 2


If f(x) = `("a" - x)/("b" - x)`, f(2) is undefined, and f(3) = 5, find a and b


Find the domain and range of the following function.

f(x) = `sqrt((x - 3)/(7 - x))`


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x2 


Express the following exponential equation in logarithmic form

e–x = 6


Prove that `"b"^(log_"b""a"` = a


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


Select the correct answer from given alternatives.

If log (5x – 9) – log (x + 3) = log 2 then x = ...............


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Answer the following:

Find whether the following function is one-one

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}


Answer the following:

Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1 


Answer the following:

Find x, if x = 33log32  


Answer the following:

Simplify, log (log x4) – log (log x)


Answer the following:

Show that `7log (15/16) + 6log(8/3) + 5log (2/5) + log(32/25)` = log 3


Answer the following:

If `log_2"a"/4 = log_2"b"/6 = log_2"c"/(3"k")` and a3b2c = 1 find the value of k


Answer the following:

Find the domain of the following function.

f(x) = x!


Find the domain of the following function.

f(x) = `sqrtlog(x^2 - 6x + 6)`


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


A graph representing the function f(x) is given in it is clear that f(9) = 2

 Describe the following Domain


If the domain of function f(a) = a2 - 4a + 8 is (-∞, ∞), then the range of function is ______


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f + g)(x)


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (fg)(x)


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


If f: R `rightarrow` R be a function defined by f(x) = 4x3 – 7. Then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×