मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: Find the domain of the following function. f(x) = x! - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Find the domain of the following function.

f(x) = x!

बेरीज

उत्तर

f(x) = x!

Domain = set of whole numbers (W)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Functions - Miscellaneous Exercise 6.2 [पृष्ठ १३२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 6 Functions
Miscellaneous Exercise 6.2 | Q II. (40) (d) | पृष्ठ १३२

संबंधित प्रश्‍न

If f(x) = x2, find `(f(1.1) - f(1))/((1.1 - 1))`


Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


fgh are three function defined from R to R as follow:

(ii) g(x) = sin x

Find the range of function.


If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]


If f(x) = (x − a)2 (x − b)2, find f(a + b).

 

If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


Write the range of the function f(x) = ex[x]x ∈ R.

 

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


Write the domain and range of  \[f\left( x \right) = \sqrt{x - \left[ x \right]}\] .

 

Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .

 

Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


If  \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) = 


The domain of the function \[f\left( x \right) = \sqrt{5 \left| x \right| - x^2 - 6}\] is

 

If ƒ(m) = m2 − 3m + 1, find f(x + 1)


If f(x) = 3x + a and f(1) = 7 find a and f(4).


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


If f(m) = m2 − 3m + 1, find f(−3)


Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6


Find the domain and range of the follwoing function.

h(x) = `sqrt(x + 5)/(5 + x)`


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x2 


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Express the following logarithmic equation in exponential form

ln 1 = 0


Solve for x.

log2 + log(x + 3) – log(3x – 5) = log3


If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


Answer the following:

Find whether the following function is one-one

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}


Answer the following:

If a2 + b2 = 7ab, show that, `log(("a" + "b")/3) = 1/2 log "a" + 1/2 log "b"`


Answer the following:

Show that, logy x3 . logz y4 . logx z5 = 60


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


Given the function f: x → x2 – 5x + 6, evaluate f(– 1)


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


If f(x) = `x^3 - 1/x^3`, then `f(x) + f(1/x)` is equal to ______.


Let A and B be any two sets such that n(B) = p, n(A) = q then the total number of functions f : A → B is equal to ______.


Let f and g be two functions given by f = {(2, 4), (5, 6), (8, – 1), (10, – 3)} g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, – 5)} then. Domain of f + g is ______.


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (fg)(x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×