Advertisements
Advertisements
प्रश्न
Let \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.
उत्तर
Given:
\[Since f(f(x)) = x, \]
\[\frac{\alpha\left( \frac{\alpha x}{x + 1} \right)}{\frac{\alpha x}{x + 1} + 1} = x\]
\[ \Rightarrow \frac{\alpha^2 x}{\alpha x + x + 1} = x\]
\[ \Rightarrow \alpha^2 x - \alpha x^2 - ( x^2 + x) = 0\]
\[\text{ Solving the quadratic equation in } \alpha: \]
\[\alpha = \frac{x^2 \pm \sqrt{x^4 + 4x( x^2 + x)}}{2x} \]
\[ \Rightarrow \alpha = x + 1 \text{ or } - 1\]
\[\text{ Since } , \alpha \neq x + 1, \]
\[\alpha = - 1 . \]
APPEARS IN
संबंधित प्रश्न
Find the domain of the function f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`
Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:
(b) pre-images of 6, −3 and 5.
find: f(1), f(−1), f(0) and f(2).
The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]
The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]
Show that f is a function and g is not a function.
If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).
If \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).
If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that
(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]
(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]
If f(x) = loge (1 − x) and g(x) = [x], then determine function:
(ii) fg
Let A = {1, 2, 3} and B = {2, 3, 4}. Then which of the following is a function from A to B?
Which one of the following is not a function?
If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and} g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to
The domain of the function
The domain of definition of the function f(x) = log |x| is
The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is
If f(m) = m2 − 3m + 1, find f(− x)
Check if the relation given by the equation represents y as function of x:
2x + 3y = 12
Find the domain and range of the following function.
f(x) = `sqrt((x - 2)(5 - x)`
Express the area A of a square as a function of its perimeter P
Express the area A of circle as a function of its radius r
Express the area A of circle as a function of its diameter d
Express the following exponential equation in logarithmic form
25 = 32
Express the following exponential equation in logarithmic form
54° = 1
Express the following exponential equation in logarithmic form
`9^(3/2)` = 27
Express the following exponential equation in logarithmic form
e2 = 7.3890
Express the following exponential equation in logarithmic form
`"e"^(1/2)` = 1.6487
Express the following logarithmic equation in exponential form
`log_5 1/25` = – 2
Find the domain of f(x) = ln (x − 5)
If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain
Select the correct answer from given alternatives.
Find x, if 2log2 x = 4
Answer the following:
Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1
Answer the following:
A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist
Answer the following:
If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy
Answer the following:
Show that, logy x3 . logz y4 . logx z5 = 60
Answer the following:
Find the range of the following function.
f(x) = |x – 5|
Find the domain of the function f given by f(x) = `1/sqrt([x]^2 - [x] - 6)`
Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`
If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)
The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.
If f: R `rightarrow` R be a function defined by f(x) = 4x3 – 7. Then ______.