मराठी

Let f ( x ) = α x x + 1 , x ≠ − 1 . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1. - Mathematics

Advertisements
Advertisements

प्रश्न

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 

उत्तर

Given:

\[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\]

\[Since f(f(x)) = x, \]

\[\frac{\alpha\left( \frac{\alpha x}{x + 1} \right)}{\frac{\alpha x}{x + 1} + 1} = x\]

\[ \Rightarrow \frac{\alpha^2 x}{\alpha x + x + 1} = x\]

\[ \Rightarrow \alpha^2 x - \alpha x^2 - ( x^2 + x) = 0\]

\[\text{ Solving the quadratic equation in }  \alpha: \]

\[\alpha = \frac{x^2 \pm \sqrt{x^4 + 4x( x^2 + x)}}{2x} \]

\[ \Rightarrow \alpha = x + 1 \text{ or } - 1\]

\[\text{ Since } , \alpha \neq x + 1, \]

\[\alpha = - 1 . \]

 

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.5 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.5 | Q 7 | पृष्ठ ४१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

\[f\left( x \right) = \begin{cases}3x - 2, & x < 0; \\ 1, & x = 0; \\ 4x + 1, & x > 0 .\end{cases}\]

find: f(1), f(−1), f(0) and f(2).

 

 


The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 


If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(ii) fg


Let A = {1, 2, 3} and B = {2, 3, 4}. Then which of the following is a function from A to B? 

 


Which one of the following is not a function?


If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


The domain of the function

\[f\left( x \right) = \sqrt{2 - 2x - x^2}\] is
 

The domain of definition of the function f(x) = log |x| is


The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


If f(m) = m2 − 3m + 1, find f(− x)


Check if the relation given by the equation represents y as function of x:

2x + 3y = 12


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Express the area A of a square as a function of its perimeter P


Express the area A of circle as a function of its radius r


Express the area A of circle as a function of its diameter d


Express the following exponential equation in logarithmic form

25 = 32


Express the following exponential equation in logarithmic form

54° = 1


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following exponential equation in logarithmic form

e2 = 7.3890


Express the following exponential equation in logarithmic form

`"e"^(1/2)` = 1.6487


Express the following logarithmic equation in exponential form

`log_5  1/25` = – 2


Find the domain of f(x) = ln (x − 5)


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


Select the correct answer from given alternatives.

Find x, if 2log2 x = 4


Answer the following:

Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1 


Answer the following:

A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist


Answer the following:

If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy


Answer the following:

Show that, logy x3 . logz y4 . logx z5 = 60


Answer the following:

Find the range of the following function.

f(x) = |x – 5|


Find the domain of the function f given by f(x) = `1/sqrt([x]^2 - [x] - 6)`


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


If f: R `rightarrow` R be a function defined by f(x) = 4x3 – 7. Then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×