मराठी

If Y = F ( X ) = a X − B B X − a , Show that X = F(Y). - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[y = f\left( x \right) = \frac{ax - b}{bx - a}\] , show that x = f(y).

 

 

उत्तर

Given:

\[f\left( x \right) = \frac{ax - b}{bx - a}\]
Let y = f (x) .
⇒ ybx -a) = ax  b 
⇒ xyb – ay = ax – 
⇒ xyb – ax = ay – b
⇒ x(by – a) = ay – 
\[\Rightarrow x = \frac{ay - b}{by - a}\]
⇒ x = f (y)      
Hence proved.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.2 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.2 | Q 3 | पृष्ठ ११

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[f\left( x \right) = \begin{cases}3x - 2, & x < 0; \\ 1, & x = 0; \\ 4x + 1, & x > 0 .\end{cases}\]

find: f(1), f(−1), f(0) and f(2).

 

 


fgh are three function defined from R to R as follow:

(ii) g(x) = sin x

Find the range of function.


The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\]

The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]

Show that f is a function and g is not a function.


If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(iv) \[\frac{f}{g}\]

 

If f(x) = cos (log x), then the value of f(x2f(y2) −

\[\frac{1}{2}\left\{ f\left( \frac{x^2}{y^2} \right) + f\left( x^2 y^2 \right) \right\}\] is
 

The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 


If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


Find the domain and range of the following function.

f(x) = 7x2 + 4x − 1


Express the area A of circle as a function of its radius r


Express the area A of circle as a function of its diameter d


Show that if f : A → B and g : B → C are onto, then g ° f is also onto


lf f(x) = 3(4x+1), find f(– 3)


Express the following exponential equation in logarithmic form

`"e"^(1/2)` = 1.6487


Express the following logarithmic equation in exponential form

log2 64 = 6


Prove that logbm a = `1/"m" log_"b""a"`


Select the correct answer from given alternatives

If f(x) = 2x2 + bx + c and f(0) = 3 and f(2) = 1, then f(1) is equal to


Select the correct answer from given alternatives

The domain of `1/([x] - x)` where [x] is greatest integer function is


A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

If `log (("a" + "b")/2) = 1/2(log"a" + log"b")`, then show that a = b


Answer the following:

Find the range of the following function.

f(x) = |x – 5|


A graph representing the function f(x) is given in it is clear that f(9) = 2

What is the image of 6 under f?


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


A function f is defined by f(x) = 2x – 3 find x such that f(x) = 0


An open box is to be made from a square piece of material, 24 cm on a side, by cutting equal square from the corner and turning up the side as shown. Express the volume V of the box as a function of x


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


Find the domain for which the functions f(x) = 2x2 – 1 and g(x) = 1 – 3x are equal.


If f(x) = `x^3 - 1/x^3`, then `f(x) + f(1/x)` is equal to ______.


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


lf f : [0, ∞) `rightarrow` [0, ∞) and f(x) = `x/(1 + x)`, then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×