मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find the domain and range of the following function. f(x) = 7x2 + 4x − 1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the domain and range of the following function.

f(x) = 7x2 + 4x − 1

बेरीज

उत्तर १

f(x) = 7x2 + 4x − 1

f is defined for all x

∴ Domain of f = R (i.e. the set of real numbers)

7x2 + 4x − 1

= `7(x^2 + 4/7x) - 1`

= `7(x + 2/7)^2 - 1 - 4/7`

= `7(x + 2/7)^2 - 11/7 ≥ - 11/7`

∴ Range of f = `[-11/7, ∞)`

shaalaa.com

उत्तर २

f(x) = 7x2 + 4x - 1

f(x) is defined for all x ∈ R

∴ Domain = R

7x2 + 4x − 1

`= 7[x^2 + 4/7x] - 1`

`= 7[x^2 + (4x)/7 + 4/49] - 28/49 - 1`

`= 7(x + 2/7)^2 - 77/49`

`= 7(x + 2/7)^2 - 11/7`

∴  `7(x + 2/7)^2 ≥ 0  "for all  x ∈ R"`

∴  `7(x + 2/7)^2 - 11/7 ≥ 0 - 11/7 "for all  x ∈ R"`

∴ `f(x) ≥ - 11/7 "for all  x ∈ R"`

∴ Range = `[-11/7, ∞)`

∴ Domain = R, Range = `[-11/7, ∞).`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Functions - Exercise 6.1 [पृष्ठ ११८]

APPEARS IN

संबंधित प्रश्‍न

Let f be the subset of Z × Z defined by f = {(ab, a + b): a, b ∈ Z}. Is f a function from Z to Z: justify your answer.


If f(x) = x2 − 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

 

If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(v) \[\frac{g}{f}\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(i) f + g

 


If f(x) = cos [π2]x + cos [−π2x, where [x] denotes the greatest integer less than or equal to x, then write the value of f(π).


If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


Check if the following relation is function:


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


If f(m) = m2 − 3m + 1, find `f(1/2)`


Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`


Check the injectivity and surjectivity of the following function.

f : N → N given by f(x) = x2 


Express the following exponential equation in logarithmic form

25 = 32


Solve for x.

x + log10 (1 + 2x) = x log10 5 + log10 6


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Select the correct answer from given alternative.

The domain and range of f(x) = 2 − |x − 5| is


Answer the following:

Find whether the following function is one-one

f : R → R defined by f(x) = x2 + 5


Answer the following:

Let f: R → R be a function defined by f(x) = 5x3 – 8 for all x ∈ R, show that f is one-one and onto. Hence find f –1 


Answer the following:

If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b


Answer the following:
If log3 [log2 (log3x)] = 1, show that x = 6561

Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?


A graph representing the function f(x) is given in it is clear that f(9) = 2

 Describe the following Domain


A graph representing the function f(x) is given in it is clear that f(9) = 2

What is the image of 6 under f?


If the domain of function f(a) = a2 - 4a + 8 is (-∞, ∞), then the range of function is ______


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


If a function f(x) is given as f(x) = x2 – 6x + 4 for all x ∈ R, then f(–3) = ______.


Find the domain of the following function.

f(x) = `x/(x^2 + 3x + 2)`


Find the domain of the following functions given by f(x) = `(x^3 - x + 3)/(x^2 - 1)`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find `(f/g)(x)`


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


Which of the following functions is NOT one-one?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×