मराठी

If F(X) = 4x − X2, X ∈ R, Then Write the Value of F(A + 1) −F(A − 1). - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) =  4x − x2x ∈ R, then write the value of f(a + 1) −f(a − 1).

 

उत्तर

Given:
f(x) =  4x − x2x ∈ R
Now,
f(a + 1) = 4(a + 1)  -(a + 1)2
             = 4a + 4 -(a2 + 1 + 2a)
             = 4a + 4 -a2 -1 - 2a 
             = 2a -a2 + 3
f(a -1) = 4(a -1) - 1) +1)2
             = 4a-4 - (a2 + 1 -2a)
             = 4a - 4 - a2 -1 + 2a 
             = 6a - a2 -5
Thus,
f(a + 1) − f(a − 1) = ( 2a -a2 + 3) -(6a -a2 -5)
                             = 2a -a2 + 3 -6a + a2 + 5
                             =  8 -4a
                             = 4(2 -a)

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.5 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.5 | Q 10 | पृष्ठ ४१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Define a function as a correspondence between two sets.

 

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(c) whether f(xy) = f(x) : f(y) holds

 

If f(x) = (x − a)2 (x − b)2, find f(a + b).

 

If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]

for all x ∈ R − {0}, then write the expression for f(x).

 
 

Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =


Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


The domain of definition of  \[f\left( x \right) = \sqrt{4x - x^2}\] is 

 

If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


Check if the following relation is a function.


If f(m) = m2 − 3m + 1, find f(−3)


Find x, if g(x) = 0 where g(x) = `(5x - 6)/7`


lf f(x) = 3(4x+1), find f(– 3)


Express the following exponential equation in logarithmic form

10−2 = 0.01


Express the following logarithmic equation in exponential form

log2 64 = 6


Express the following logarithmic equation in exponential form

In `1/2` = – 0.693


Write the following expression as sum or difference of logarithm

In `(("a"^3 ("a" - 2)^2)/sqrt("b"^2 + 5))`


Write the following expression as a single logarithm.

5 log x + 7 log y − log z


Given that log 2 = a and log 3 = b, write `log sqrt(96)` in terms of a and b


If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)


Answer the following:

Find whether the following function is one-one

f : R − {3} → R defined by f(x) = `(5x + 7)/(x - 3)` for x ∈ R − {3}


Answer the following:

Let f : R – {2} → R be defined by f(x) = `(x^2 - 4)/(x - 2)` and g : R → R be defined by g(x) = x + 2. Examine whether f = g or not


Answer the following:

If `log (("a" + "b")/2) = 1/2(log"a" + log"b")`, then show that a = b


Answer the following:

Solve for x, logx (8x – 3) – logx 4 = 2


Answer the following:

Solve : `sqrt(log_2 x^4) + 4log_4 sqrt(2/x)` = 2


Answer the following:

Find the range of the following function.

f(x) = `x/(9 + x^2)`


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


Given the function f: x → x2 – 5x + 6, evaluate f(– 1)


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


If f(x) = `1/sqrt(4 - 3x)`, then dom(f) = ______..


If f(x) = `x^3 - 1/x^3`, then `f(x) + f(1/x)` is equal to ______.


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


Redefine the function f(x) = x − 2 + 2 + x , – 3 ≤ x ≤ 3


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f – g)(x)


The domain of the function f defined by f(x) = `sqrt(4 - x) + 1/sqrt(x^2 - 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×