मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: If log(a+b2)=12(loga+logb), then show that a = b - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

If `log (("a" + "b")/2) = 1/2(log"a" + log"b")`, then show that a = b

बेरीज

उत्तर

`log (("a" + "b")/2) = 1/2(log"a" + log"b")`

∴ `2 log (("a" + "b")/2)` = log a + log b

∴ `log (("a" + "b")/2)^2` = log ab

∴ `("a" + "b")^2/4` = ab

∴ a2 + 2ab + b2 = 4ab

∴ a2 + 2ab – 4ab + b2 = 0

∴ a2 – 2ab + b2 = 0

∴ (a – b)2 = 0

∴ a – b = 0

∴ a = b

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Functions - Miscellaneous Exercise 6.2 [पृष्ठ १३१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 6 Functions
Miscellaneous Exercise 6.2 | Q II. (24) | पृष्ठ १३१

संबंधित प्रश्‍न

Let A = {−2, −1, 0, 1, 2} and f : A → Z be a function defined by f(x) = x2 − 2x − 3. Find:

(b) pre-images of 6, −3 and 5.

 

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(a) f1 = {(1, 1), (2, 11), (3, 1), (4, 15)} 


If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

If for non-zero xaf(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).

 

Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

If f : Q → Q is defined as f(x) = x2, then f−1 (9) is equal to


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


If f(x) = sin [π2x + sin [−π]2 x, where [x] denotes the greatest integer less than or equal to x, then


The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is 

 

Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


If f(m) = m2 − 3m + 1, find f(0)


Which of the following relations are functions? If it is a function determine its domain and range:

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


If f(x) =` (2x−1)/ (5x−2) , x ≠ 2/5` Verify whether (fof) (x) = x


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


If f(m) = m2 − 3m + 1, find f(0)


Find the domain and range of the following function.

f(x) = `sqrt((x - 3)/(7 - x))`


Express the area A of a square as a function of its perimeter P


Express the following exponential equation in logarithmic form

e–x = 6


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


Prove that `"b"^(log_"b""a"` = a


If x = loga bc, y = logb ca, z = logc ab then prove that `1/(1 + x) + 1/(1 + y) + 1/(1 + z)` = 1


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


Select the correct answer from given alternatives.

If log10(log10(log10x)) = 0 then x =


Answer the following:

A function f is defined as f(x) = 4x + 5, for – 4 ≤ x < 0. Find the values of f(–1), f(–2), f(0), if they exist


Answer the following:

If f(x) = 3x4 – 5x2 + 7 find f(x – 1)


Find the domain of the following function.

f(x) = `sqrtlog(x^2 - 6x + 6)`


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


Let f : R → R be defined by 

f(x) = `{(3x;    x > 2),(2x^2;    1 ≤ x ≤ 2), (4x;   x < 1):}`

Then f(-2) + f(1) + f(3) is ______ 


Find the domain of the following function.

f(x) = [x] + x


Redefine the function f(x) = x − 2 + 2 + x , – 3 ≤ x ≤ 3


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If f(g(x)) = 8x2 – 2x, and g(f(x)) = 4x2 + 6x + 1, then the value of f(2) + g(2) is ______.


Which of the following functions is NOT one-one?


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×