मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b

बेरीज

उत्तर

f(x) = ax2 − bx + 6

f(2) = 3

∴ a(2)2 − b(2) + 6 = 3

∴ 4a – 2b + 6 = 3

∴ 4a – 2b + 3 = 0   ...(i)

f(4) = 30

∴ a(4)2 − b(4) + 6 = 30

∴ 16a – 4b + 6 = 30

∴ 16a – 4b – 24 = 0   ...(ii)

By (ii) – 2 × (i), we get

8a – 30 = 0

∴ a = `30/8 = 15/4`

Substituting a = `15/4` in (i), we get

`4(15/4) - 2"b" + 3` = 0

∴ 2b = 18

∴ b = 9

∴ a = `15/4`, b = 9

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Functions - Exercise 6.1 [पृष्ठ ११९]

संबंधित प्रश्‍न

Let A = {9, 10, 11, 12, 13} and let f: A → N be defined by f(n) = the highest prime factor of n. Find the range of f.


Define a function as a correspondence between two sets.

 

Let f : R+ → R, where R+ is the set of all positive real numbers, such that f(x) = loge x. Determine

(b) {x : f(x) = −2}


fgh are three function defined from R to R as follow:

(iii) h(x) = x2 + 1

Find the range of function.


If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].

 

If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.

 

 


If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]

for all x ∈ R − {0}, then write the expression for f(x).

 
 

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


Let f(x) = |x − 1|. Then,


Check if the relation given by the equation represents y as function of x:

3x − 6 = 21


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


Find the domain and range of the following function.

f(x) = `sqrt((x - 3)/(7 - x))`


Show that if f : A → B and g : B → C are one-one, then g ° f is also one-one


Express the following exponential equation in logarithmic form

54° = 1


Express the following exponential equation in logarithmic form

231 = 23


Select the correct answer from given alternatives.

Let the function f be defined by f(x) = `(2x + 1)/(1 - 3x)` then f–1 (x) is ______.


Select the correct answer from given alternatives

If f(x) = 2x2 + bx + c and f(0) = 3 and f(2) = 1, then f(1) is equal to


Answer the following:

Identify the following relation is the function? If it is a function determine its domain and range.

{(0, 0), (1, 1), (1, –1), (4, 2), (4, –2), (9, 3), (9, –3), (16, 4), (16, –4)}


Answer the following:

Show that, `log |sqrt(x^2 + 1) + x | + log | sqrt(x^2 + 1) - x|` = 0


Answer the following:

Simplify, log (log x4) – log (log x)


Answer the following:

If b2 = ac. prove that, log a + log c = 2 log b


Answer the following:

Solve for x, logx (8x – 3) – logx 4 = 2


Answer the following:
If log3 [log2 (log3x)] = 1, show that x = 6561

Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - x^2) + sqrt(5 - x)`


Let f = {(x, y) | x, y ∈ N and y = 2x} be a relation on N. Find the domain, co-domain and range. Is this relation a function?


Given the function f: x → x2 – 5x + 6, evaluate f(2a)


A graph representing the function f(x) is given in it is clear that f(9) = 2

Describe the following Range


Let f(x) = 2x + 5. If x ≠ 0 then find `(f(x + 2) -"f"(2))/x`


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


If f(x) = `1/sqrt(4 - 3x)`, then dom(f) = ______..


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


Find the domain and range of the function f(x) = `1/sqrt(x - 5)`


Let f(x) = `sqrt(1 + x^2)`, then ______.


The domain of the function f given by f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` is ______.


Range of the function f(x) = `x/(1 + x^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×