मराठी

Let f(x) = 1+x2, then ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Let f(x) = `sqrt(1 + x^2)`, then ______.

पर्याय

  • f(xy) = f(x) . f(y)

  • f(xy) ≥ f(x) . f(y)

  • f(xy) ≤ f(x) . f(y)

  • None of these

MCQ
रिकाम्या जागा भरा

उत्तर

Let f(x) = `sqrt(1 + x^2)`, then f(xy) ≤ f(x) . f(y).

Explanation:

Given that: f(x) = `sqrt(1 + x^2)`

⇒ f(xy) = `sqrt(1 + x^2y^2)`

And f(x) . f(y) = `sqrt(1 + x^2) * sqrt(1 + y^2)`

= `sqrt(1 + x^2 + y^2 + x^2y^2)`

∵ `sqrt(1 + x^2y^2) ≤ sqrt(1 + x^2 + y^2 + x^2y^2)`

⇒ f(xy) ≤ f(x) . f(y)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Relations and Functions - Exercise [पृष्ठ ३१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 2 Relations and Functions
Exercise | Q 27 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let X = {1, 2, 3, 4} and Y = {1, 5, 9, 11, 15, 16}
Determine which of the set are functions from X to Y.

(c) f3 = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}

 

 


If for non-zero xaf(x) + bf \[\left( \frac{1}{x} \right) = \frac{1}{x} - 5\] , where a ≠ b, then find f(x).

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(viii) \[\frac{5}{8}\]

 

Write the range of the function f(x) = sin [x], where \[\frac{- \pi}{4} \leq x \leq \frac{\pi}{4}\] . 


If f(x) = cos [π2]x + cos [−π2x, where [x] denotes the greatest integer less than or equal to x, then write the value of f(π).


Let f and g be two real functions given by

f = {(0, 1), (2, 0), (3, −4), (4, 2), (5, 1)} and g = {(1, 0), (2, 2), (3, −1), (4, 4), (5, 3)}

Find the domain of fg.


If  \[f\left( x \right) = \frac{2^x + 2^{- x}}{2}\] , then f(x + yf(x − y) is equal to

 


If 2f (x) − \[3f\left( \frac{1}{x} \right) = x^2\] (x ≠ 0), then f(2) is equal to

 

If  \[e^{f\left( x \right)} = \frac{10 + x}{10 - x}\] , x ∈ (−10, 10) and \[f\left( x \right) = kf\left( \frac{200 x}{100 + x^2} \right)\] , then k =

 

A function f is defined as follows: f(x) = 5 − x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3


If f(x) = 3x + a and f(1) = 7 find a and f(4).


Check if the following relation is a function.


Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6


Find the domain and range of the following function.

g(x) = `(x + 4)/(x - 2)`


Find the domain and range of the following function.

f(x) = `sqrt(16 - x^2)`


Find the domain of f(x) = ln (x − 5)


Write the following expression as sum or difference of logarithm

`log ("pq"/"rs")`


Answer the following:

Simplify, log (log x4) – log (log x)


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

Find the range of the following function.

f(x) = `1/(1 + sqrt(x))`


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


Let X = {3, 4, 6, 8}. Determine whether the relation R = {(x, f(x)) | x ∈ X, f(x) = x2 + 1} is a function from X to N?


Given the function f: x → x2 – 5x + 6, evaluate f(x – 1)


A graph representing the function f(x) is given in it is clear that f(9) = 2

What is the image of 6 under f?


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find the height of a person whose forehand length is 40 cm


If f(x) = `(x - 1)/(x + 1), x ≠ - 1` Show that f(f(x)) = `- 1/x`, Provided x ≠ 0


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

Write an expression for gf(x) in its simplest form


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f – g)(x)


The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×