मराठी

Find the domain and range of the function f(x) = 1x-5 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the domain and range of the function f(x) = `1/sqrt(x - 5)`

बेरीज

उत्तर

Given that: f(x) = `1/sqrt(x - 5)`

Here, it is clear that f(x) is real when x – 5 > 0

⇒ x > 5

Hence, the domain = `(5, oo)`

Now to find the range put

f(x) = y = `1/sqrt(x - 5)`

⇒ `sqrt(x - 5) = 1/y`

⇒ `x - 5 = 1/y^2`

⇒ x = `1/y^2 + 5`

For x ∈ `(5, oo)`, y ∈ R+

Hence, the range of f = R+. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Relations and Functions - Exercise [पृष्ठ ३०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 2 Relations and Functions
Exercise | Q 22 | पृष्ठ ३०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A function f : R → R is defined by f(x) = x2. Determine (a) range of f, (b) {x : f(x) = 4}, (c) [yf(y) = −1].


et A = (12, 13, 14, 15, 16, 17) and f : A → Z be a function given by
f(x) = highest prime factor of x.
Find range of f.


If f(x) = x2, find \[\frac{f\left( 1 . 1 \right) - f\left( 1 \right)}{\left( 1 . 1 \right) - 1}\]


Write the range of the function f(x) = sin [x], where \[\frac{- \pi}{4} \leq x \leq \frac{\pi}{4}\] . 


If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]

 

 


Which of the following are functions?


The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

Check if the relation given by the equation represents y as function of x:

x + y2 = 9


If f(m) = m2 − 3m + 1, find f(0)


If f(m) = m2 − 3m + 1, find f(−3)


Find x, if g(x) = 0 where g(x) = x3 − 2x2 − 5x + 6


Find x, if f(x) = g(x) where f(x) = `sqrt(x) - 3`, g(x) = 5 – x


Check the injectivity and surjectivity of the following function.

f : R → R given by f(x) = x3 


Show that if f : A → B and g : B → C are onto, then g ° f is also onto


Express the following exponential equation in logarithmic form

3–4 = `1/81`


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


Given that log 2 = a and log 3 = b, write `log sqrt(96)` in terms of a and b


If f(x) = ax2 − bx + 6 and f(2) = 3 and f(4) = 30, find a and b


Answer the following:

Find x, if x = 33log32  


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - x^2) + sqrt(5 - x)`


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find a and b


The function f and g are defined by f(x) = 6x + 8; g(x) = `(x - 2)/3`

 Calculate the value of `"gg" (1/2)`


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


Find the range of the following functions given by f(x) = |x − 3|


If f(x) = x3 – 1 and domain of f = {0, 1, 2, 3}, then domain of f–1 is ______.


The domain of the function f(x) = `1/sqrt(|x| - x)` is ______.


The function f: R `rightarrow` R defined by f(x) = sin x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×