मराठी

If f(x) = y = ax-bcx-a, then prove that f(y) = x. - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.

बेरीज

उत्तर

We have, f(x) = y = `(ax - b)/(cx - a)`

∴ f(y) = `(ay - b)/(cy - a)`

= `(a((ax - b)/(cx - a)) - b)/(c((ax - b)/(cx - a)) - a)`

= `(a(ax - b) - b(cx - a))/(c(ax - b) - a(cx - a))`

= `(a^2x - ab - bcx  + ab)/(acx - bc - acx + a^2)`

= `(a^2x - bcx)/(a^2 - bc)`

= `(x(a^2 - bc))/((a^2 - bc))`

∴ f(y) = x

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Relations and Functions - Exercise [पृष्ठ ३०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 2 Relations and Functions
Exercise | Q 23 | पृष्ठ ३०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

If fg and h are real functions defined by 

\[f\left( x \right) = \sqrt{x + 1}, g\left( x \right) = \frac{1}{x}\] and h(x) = 2x2 − 3, find the values of (2f + g − h) (1) and (2f + g − h) (0).
 
 

Let f(x) = |x − 1|. Then,


Which of the following are functions?


If : [−2, 2] → R is defined by \[f\left( x \right) = \begin{cases}- 1, & \text{ for }  - 2 \leq x \leq 0 \\ x - 1, & \text{ for }   0 \leq x \leq 2\end{cases}\] , then
{x ∈ [−2, 2] : x ≤ 0 and f (|x|) = x} =

 

The domain of definition of the function \[f\left( x \right) = \sqrt{\frac{x - 2}{x + 2}} + \sqrt{\frac{1 - x}{1 + x}}\] is 

 

The range of the function \[f\left( x \right) = \frac{x}{\left| x \right|}\] is


Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


Which of the following relations are functions? If it is a function determine its domain and range:

{(0, 0), (1, 1), (1, −1), (4, 2), (4, −2), (9, 3), (9, −3), (16, 4), (16, −4)}


Check if the relation given by the equation represents y as function of x:

x2 − y = 25


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Find the domain of f(x) = log10 (x2 − 5x + 6)


Solve for x.

log2 + log(x + 3) – log(3x – 5) = log3


If `log(( x - y)/4) = logsqrt(x) + log sqrt(y)`, show that (x + y)2 = 20xy 


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f − g) (2)


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - x^2) + sqrt(5 - x)`


A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`


A plane is flying at a speed of 500 km per hour. Express the distance ‘d’ travelled by the plane as function of time t in hour


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


Find the range of the following functions given by `sqrt(16 - x^2)`


Let f and g be two functions given by f = {(2, 4), (5, 6), (8, – 1), (10, – 3)} g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, – 5)} then. Domain of f + g is ______.


Find the domain of the following functions given by f(x) = x|x|


Find the domain of the following function given by:

f(x) = `(3x)/(2x - 8)`


The domain and range of the function f given by f(x) = 2 – |x – 5| is ______.


The value of the function f(x) = `(x^2 - 3x + 2)/(x^2 + x - 6)` lies in the interval


The range of the function y = `1/(2 - sin3x)` is ______.


The expression \[\begin{array}{cc}\log_p\log_p\sqrt[p]{\sqrt[p]{\sqrt[p]{\text{...........}\sqrt[p]{p}}}}\\
\phantom{...........}\ce{\underset{n radical signs}{\underline{\uparrow\phantom{........}\uparrow}}}
\end{array}\]where p ≥ 2, p ∈ N; ∈ N when simplified is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×