मराठी

Let F and G Be Two Real Functions Defined by F ( X ) = √ X + 1 and G ( X ) = √ 9 − X 2 . Then, Describe Function: (Vi) 2 F − √ 5 G - Mathematics

Advertisements
Advertisements

प्रश्न

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

उत्तर

Given:

\[f\left( x \right) = \sqrt{x + 1}\text{ and } g\left( x \right) = \sqrt{9 - x^2}\]

Clearly,

\[f\left( x \right) = \sqrt{x + 1}\]  is defined for all x ≥ - 1.
Thus, domain (f) = [1, ∞]
Again,
 
\[g\left( x \right) = \sqrt{9 - x^2}\]   is defined for  9 -x2 ≥ 0 ⇒ x2 - 9 ≤ 0
⇒ x2 - 32 ≤ 0
⇒ (x + 3)(x - 3) ≤ 0
\[x \in \left[ - 3, 3 \right]\]
Thus, domain (g) = [ - 3, 3]
Now,
domain ( f ) ∩ domain( g ) = [ -1, ∞] ∩ [- 3, 3]    = [ -1, 3]
(vi) \[2f - \sqrt{5}g: \left[ - 1, 3 \right] \to \text{ R is given by }  \left( 2f - \sqrt{5}g \right)\left( x \right) = 2\sqrt{x + 1} - \sqrt{5}\left( \sqrt{9 - x^2} \right)\] \[= 2\sqrt{x + 1} - \sqrt{45 - 5 x^2}\]
 
 
 


 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.4 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.4 | Q 4.6 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Define a function as a correspondence between two sets.

 

If  \[f\left( x \right) = \frac{x + 1}{x - 1}\] , show that f[f[(x)]] = x.

 

 


If \[f\left( x \right) = \frac{2x}{1 + x^2}\] , show that f(tan θ) = sin 2θ.

 

 


If f(x) = loge (1 − x) and g(x) = [x], then determine function:

(iii) \[\frac{f}{g}\]

 

Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

Write the range of the function f(x) = ex[x]x ∈ R.

 

If\[f\left( x \right) = 1 - \frac{1}{x}\] , then write the value of \[f\left( f\left( \frac{1}{x} \right) \right)\]

 

 


Write the domain and range of the function  \[f\left( x \right) = \frac{x - 2}{2 - x}\] .

 

Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


The function f : R → R is defined by f(x) = cos2 x + sin4 x. Then, f(R) =


If \[3f\left( x \right) + 5f\left( \frac{1}{x} \right) = \frac{1}{x} - 3\]  for all non-zero x, then f(x) =


The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

The domain of definition of  \[f\left( x \right) = \sqrt{x - 3 - 2\sqrt{x - 4}} - \sqrt{x - 3 + 2\sqrt{x - 4}}\] is 

 


The range of  \[f\left( x \right) = \frac{1}{1 - 2\cos x}\] is 

 


If f(m) = m2 − 3m + 1, find f(− x)


Check if the following relation is a function.


If f(m) = m2 − 3m + 1, find f(0)


If f(m) = m2 − 3m + 1, find f(− x)


Find the domain and range of the following function.

f(x) = `sqrt((x - 2)(5 - x)`


Show that if f : A → B and g : B → C are one-one, then g ° f is also one-one


Express the following exponential equation in logarithmic form

e–x = 6


Write the following expression as sum or difference of logarithm

In `(("a"^3 ("a" - 2)^2)/sqrt("b"^2 + 5))`


Write the following expression as a single logarithm.

5 log x + 7 log y − log z


Prove that `"b"^(log_"b""a"` = a


Prove that alogcb = blogca


Solve for x.

log2 x + log4 x + log16 x = `21/4`


Find the domain of the following function.

f(x) = `sqrtlog(x^2 - 6x + 6)`


Answer the following:

Find the range of the following function.

f(x) = [x] – x


The range of 7, 11, 16, 27, 31, 33, 42, 49 is ______.


The range of the function f(x) = `(x^2 - 3x + 2)/(x^3 - 4x^2 + 5x - 2)` is ______


Find the range of the following functions given by f(x) = `3/(2 - x^2)`


Let f(x) = `sqrt(x)` and g(x) = x be two functions defined in the domain R+ ∪ {0}. Find (f + g)(x)


Let f(x) = `sqrt(1 + x^2)`, then ______.


The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.


The range of the function y = `1/(2 - sin3x)` is ______.


Let f be a function with domain [–3, 5] and let g(x) = | 3x + 4 |. Then, the domain of (fog) (x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×