मराठी

If F(X) = Cos (Log X), Then the Value of F(X) F(Y) − 1 2 { F ( X Y ) + F ( X Y ) } Is(A) −1 (B) 1/2 (C) −2 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

पर्याय

  • (a) −1

  • (b) 1/2

  • (c) −2

  • (d) None of these

     
MCQ

उत्तर

(d) None of these

Given:

\[f\left( x \right) = \cos\left( \log x \right)\]
∴ \[f\left( y \right) = \cos\left( \log y \right)\]
 
Now,
\[f\left( \frac{x}{y} \right) = \cos\left( \log\left( \frac{x}{y} \right) \right) = \cos\left( \log x - \log y \right)\] and
\[f\left( xy \right) = \cos\left( \log xy \right) = \cos\left( \log x + \log y \right)\]  \[\Rightarrow f\left( \frac{x}{y} \right) + f\left( xy \right) = \cos\left( \log x - \log y \right) + \cos\left( \log x + \log y \right)\]
\[ \Rightarrow f\left( \frac{x}{y} \right) + f\left( xy \right) = 2\cos\left( \log x \right)\cos\left( \log y \right)\]
\[ \Rightarrow \frac{1}{2}\left[ f\left( \frac{x}{y} \right) + f\left( xy \right) \right] = \cos\left( \log x \right)\cos\left( \log y \right)\] \[\Rightarrow f\left( x \right)f\left( y \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\} = \cos\left( \log x \right)\cos\left( \log y \right) - \cos\left( \log x \right)\cos\left( \log y \right) = 0\]
\[\Rightarrow f\left( x \right)f\left( y \right) - \frac{1}{2}\left\{ f\left( xy \right) + f\left( \frac{x}{y} \right) \right\} = \cos\left( \log x \right)\cos\left( \log y \right) - \cos\left( \log x \right)\cos\left( \log y \right) = 0\]
  
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 5 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If \[f\left( x \right) = \frac{x - 1}{x + 1}\] , then show that  

(i) \[f\left( \frac{1}{x} \right) = - f\left( x \right)\]

(ii) \[f\left( - \frac{1}{x} \right) = - \frac{1}{f\left( x \right)}\]


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vii) f2 + 7f


Write the domain and range of function f(x) given by \[f\left( x \right) = \sqrt{\left[ x \right] - x}\] .

 

Let A and B be two sets such that n(A) = p and n(B) = q, write the number of functions from A to B.


Let f and g be two functions given by

f = {(2, 4), (5, 6), (8, −1), (10, −3)} and g = {(2, 5), (7, 1), (8, 4), (10, 13), (11, −5)}.

Find the domain of f + g


If f : Q → Q is defined as f(x) = x2, then f−1 (9) is equal to


If \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right)\] , then \[f\left( \frac{2x}{1 + x^2} \right)\]  is equal to

 

 


The range of the function  \[f\left( x \right) = \frac{x^2 - x}{x^2 + 2x}\]  is 

 

f is a real valued function given by \[f\left( x \right) = 27 x^3 + \frac{1}{x^3}\] and α, β are roots of \[3x + \frac{1}{x} = 12\] . Then,

 
 

The domain of definition of  \[f\left( x \right) = \sqrt{\frac{x + 3}{\left( 2 - x \right) \left( x - 5 \right)}}\] is 

  

Let  \[f\left( x \right) = \sqrt{x^2 + 1}\ ] . Then, which of the following is correct?

 


If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 


A function f is defined as follows: f(x) = 4x + 5, for −4 ≤ x < 0. Find the values of f(−1), f(−2), f(0), if they exist.


If f(x) = 3x + a and f(1) = 7 find a and f(4).


If f(m) = m2 − 3m + 1, find `f(1/2)`


Find x, if g(x) = 0 where g(x) = `(5x - 6)/7`


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Express the following exponential equation in logarithmic form

e–x = 6


Express the following logarithmic equation in exponential form

log10 (0.001) = −3


Write the following expression as a single logarithm.

5 log x + 7 log y − log z


Prove that `"b"^(log_"b""a"` = a


Prove that alogcb = blogca


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


Answer the following:

A function f is defined as : f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 5


Answer the following:

Simplify, log (log x4) – log (log x)


Answer the following:

Simplify `log_10  28/45 - log_10  35/324 + log_10  325/432 - log_10  13/15`


Answer the following:

Without using log tables, prove that `2/5 < log_10 3 < 1/2`


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - 3) + 1/(log(5 - x))`


Answer the following:

Find the range of the following function.

f(x) = 1 + 2x + 4x 


An open box is to be made from a square piece of material, 24 cm on a side, by cutting equal square from the corner and turning up the side as shown. Express the volume V of the box as a function of x


The data in the adjacent table depicts the length of a person's forehand and their corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constant.

Length ‘x’ of
forehand (in cm)
Height 'y' 
(in inches)
35 56
45 65
50 69.5
55 74

Find a and b


The domain of the function f(x) = `sqrtx` is ______.


If f(x) = 5x - 3, then f-1(x) is ______ 


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


Find the domain of the following function.

f(x) = [x] + x


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


The range of the function f(x) = x2 + 2x+ 2 is ______.


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×