मराठी

If [ X ] 2 − 5 [ X ] + 6 = 0 , Where [.] Denotes the Greatest Integer Function, Then (A) X ∈ [3, 4] (B) X ∈ (2, 3] (C) X ∈ [2, 3] (D) X ∈ [2, 4) - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\], where [.] denotes the greatest integer function, then 

 

पर्याय

  • (a) ∈ [3, 4]   

  •    (b) ∈ (2, 3]           

  •   (c) ∈ [2, 3]      

  •   (d) ∈ [2, 4)

MCQ

उत्तर

The given equation is \[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\]

\[\left[ x \right]^2 - 5\left[ x \right] + 6 = 0\]
\[ \Rightarrow \left[ x \right]^2 - 3\left[ x \right] - 2\left[ x \right] + 6 = 0\]
\[ \Rightarrow \left[ x \right]\left( \left[ x \right] - 3 \right) - 2\left( \left[ x \right] - 3 \right) = 0\]
\[ \Rightarrow \left( \left[ x \right] - 2 \right)\left( \left[ x \right] - 3 \right) = 0\]

\[\Rightarrow \left[ x \right] - 2 = 0 \text{ or } \left[ x \right] - 3 = 0\]
\[ \Rightarrow \left[ x \right] = 2\text{  or }  \left[ x \right] = 3\]

⇒ x ∈ [2, 3) or x ∈ [3, 4)
⇒ x ∈ [2, 4)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.6 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.6 | Q 44 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[f\left( x \right) = \begin{cases}3x - 2, & x < 0; \\ 1, & x = 0; \\ 4x + 1, & x > 0 .\end{cases}\]

find: f(1), f(−1), f(0) and f(2).

 

 


If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].

 

If  \[f\left( x \right) = \frac{1}{1 - x}\] , show that f[f[f(x)]] = x.

 

 


If f(x) = (a − xn)1/na > 0 and n ∈ N, then prove that f(f(x)) = x for all x.

 

Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(vi)  \[2f - \sqrt{5} g\]

 

Write the range of the function f(x) = cos [x], where \[\frac{- \pi}{2} < x < \frac{\pi}{2}\] .

 

If f : Q → Q is defined as f(x) = x2, then f−1 (9) is equal to


If x ≠ 1 and \[f\left( x \right) = \frac{x + 1}{x - 1}\] is a real function, then f(f(f(2))) is

 

Let A = {x ∈ R : x ≠ 0, −4 ≤ x ≤ 4} and f : A ∈ R be defined by  \[f\left( x \right) = \frac{\left| x \right|}{x}\] for x ∈ A. Then th (is


If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g(f(x)) = 8 are


If f(x) = sin [π2x + sin [−π]2 x, where [x] denotes the greatest integer less than or equal to x, then


If f(m) = m2 − 3m + 1, find f(−3)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(3)


If f(x) = `{(x^2 + 3","  x ≤ 2),(5x + 7","  x > 2):},` then find f(2)


Find the domain and range of the following function.

f(x) = 7x2 + 4x − 1


Find the domain and range of the follwoing function.

h(x) = `sqrt(x + 5)/(5 + x)`


Express the area A of circle as a function of its radius r


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following exponential equation in logarithmic form

e–x = 6


Express the following logarithmic equation in exponential form

ln e = 1


Find the domain of f(x) = log10 (x2 − 5x + 6)


Write the following expression as sum or difference of logarithm

In `[(root(3)(x - 2)(2x + 1)^4)/((x + 4)sqrt(2x + 4))]^2`


Solve for x.

x + log10 (1 + 2x) = x log10 5 + log10 6


If f(x) = 3x + 5, g(x) = 6x − 1, then find (fg) (3)


If f(x) = 3x + 5, g(x) = 6x − 1, then find `("f"/"g") (x)` and its domain


Answer the following:

If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b


Answer the following:

Let f : R → R be given by f(x) = x + 5 for all x ∈ R. Draw its graph


Answer the following:

If `log ((x - y)/5) = 1/2 logx + 1/2 log y`, show that x2 + y2 = 27xy


Answer the following:

Show that `7log (15/16) + 6log(8/3) + 5log (2/5) + log(32/25)` = log 3


Find the range of the following functions given by `|x - 4|/(x - 4)`


Redefine the function which is given by f(x) = `|x - 1| + |1 + x|, -2 ≤ x ≤ 2`


Find the domain of the following functions given by f(x) = `1/sqrt(1 - cos x)`


Find the range of the following functions given by f(x) = 1 – |x – 2| 


Find the domain and range of the function f(x) = `1/sqrt(x - 5)`


If f(x) = y = `(ax - b)/(cx - a)`, then prove that f(y) = x.


The domain of the function f defined by f(x) = `sqrt(4 - x) + 1/sqrt(x^2 - 1)` is equal to ______.


The domain and range of real function f defined by f(x) = `sqrt(x - 1)` is given by ______.


The domain of the function f given by f(x) = `(x^2 + 2x + 1)/(x^2 - x - 6)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×