मराठी

If F : R → R Be Defined by F(X) = X2 + 1, Then Find F−1 [17] and F−1 [−3]. - Mathematics

Advertisements
Advertisements

प्रश्न

If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].

 

उत्तर

If f : A → B is such that y ∈ B, then \[f^{- 1}\] { }={x ∈ Af (x) = y}.
In other words, -1y} is the set of pre - images of  y.
Let

\[f^{- 1}\] {17} = x .
Then, f (x) =17 .
 x2 +1 = 17
⇒ x2 = 17 -1 = 16
⇒ x = ± 4
∴ \[f^{- 1}\] {17} = { -4,4} 
Again,
let
\[f^{- 1}\] { -3} = x .
Then, (x) =-3
⇒ x2 + 1 = -3
⇒ x2 =- 3 - 1 = -4 
⇒ \[x = \sqrt{- 4}\]
Clearly, no soluti on is available in R.
So
\[f^{- 1}\] {- 3} = Φ .
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Functions - Exercise 3.1 [पृष्ठ ८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 3 Functions
Exercise 3.1 | Q 13 | पृष्ठ ८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the domain of the function  f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)`


If  \[f\left( x \right) = \begin{cases}x^2 , & \text{ when }  x < 0 \\ x, & \text{ when }  0 \leq x < 1 \\ \frac{1}{x}, & \text{ when }  x \geq 1\end{cases}\]

find: (a) f(1/2), (b) f(−2), (c) f(1), (d)

\[f\left( \sqrt{3} \right)\] and (e) \[f\left( \sqrt{- 3} \right)\]
 

If  \[f\left( x \right) = x^3 - \frac{1}{x^3}\] , show that

\[f\left( x \right) + f\left( \frac{1}{x} \right) = 0 .\]
 

 


Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function: 

(ii) g − 


Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 

If f is a real function satisfying \[f\left( x + \frac{1}{x} \right) = x^2 + \frac{1}{x^2}\]

for all x ∈ R − {0}, then write the expression for f(x).

 
 

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] . Then write the value of α satisfying f(f(x)) = x for all x ≠ −1.

 

 


Find the set of values of x for which the functions f(x) = 3x2 − 1 and g(x) = 3 + x are equal.


If f : Q → Q is defined as f(x) = x2, then f−1 (9) is equal to


If f(x) = cos (log x), then the value of f(xf(y) −\[\frac{1}{2}\left\{ f\left( \frac{x}{y} \right) + f\left( xy \right) \right\}\] is

 

If  \[f\left( x \right) = \log \left( \frac{1 + x}{1 - x} \right) \text{ and}  g\left( x \right) = \frac{3x + x^3}{1 + 3 x^2}\] , then f(g(x)) is equal to

 


If  \[f\left( x \right) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}\] for x ∈ R, then f (2002) = 


Check if the following relation is function:


If f(m) = m2 − 3m + 1, find f(−3)


Which of the following relations are functions? If it is a function determine its domain and range:

{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}


Check if the following relation is a function.


Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {−1, 0, 1, 2, 3}? Justify.

{(1, 0), (3, 3), (2, −1), (4, 1), (2, 2)}


Check if the relation given by the equation represents y as function of x:

x2 − y = 25


Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2


Check the injectivity and surjectivity of the following function.

f : Z → Z given by f(x) = x2 


Express the following exponential equation in logarithmic form

`9^(3/2)` = 27


Express the following logarithmic equation in exponential form

ln e = 1


Write the following expression as sum or difference of logarithm

`log ("pq"/"rs")`


Write the following expression as a single logarithm.

ln (x + 2) + ln (x − 2) − 3 ln (x + 5)


Prove that alogcb = blogca


If f(x) = 3x + 5, g(x) = 6x − 1, then find (f + g) (x)


Answer the following:

If b2 = ac. prove that, log a + log c = 2 log b


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(x - 3) + 1/(log(5 - x))`


Answer the following:

Find the domain of the following function.

f(x) = x!


A function f is defined by f(x) = 2x – 3 find `("f"(0) + "f"(1))/2`


A function f is defined by f(x) = 2x – 3 find x such that f(x) = x


The range of 7, 11, 16, 27, 31, 33, 42, 49 is ______.


If f(x) = `{{:(x^2",", x ≥ 0),(x^3",", x < 0):}`, then f(x) is ______.


If f(x) = `(x - 1)/(x + 1)`, then show that `f(1/x)` = – f(x)


Range of f(x) = `1/(1 - 2 cosx)` is ______.


The domain for which the functions defined by f(x) = 3x2 – 1 and g(x) = 3 + x are equal is ______.


The domain of the function f(x) = `sin^-1((|x| + 5)/(x^2 + 1))` is (–∞, –a] ≈ [a, ∞). Then a is equal to ______.


The ratio `(2^(log_2  1/4 a) - 3^(log_27(a^2 + 1)^3) - 2a)/(7^(4log_49a) - a - 1)` simplifies to ______.


If f : R – {2} `rightarrow` R i s a function defined by f(x) = `(x^2 - 4)/(x - 2)`, then its range is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×